Especificación Técnica D184S035U05 Rev. 10

FV4000, FS4000 Caudalímetro Vortex y Swirl

Aparato de diseño compacto en tecnología de dos hilos Transmisor con tecnología de procesador digital de señales

Para medida de líquidos, gases y vapores

Caudalímetro Vortex FV4000

FS4000 – Caudalímetro Swirl para tramos de amortiguación muy cortos

Homologaciones Ex

- ATEX
- IECFM_{us}
 - Zona 1, Zona 2, Ex polvo

Manejo mediante puntero magnético

 Acceso permanente a la configuración, aun cuando la carcasa esté cerrada.

Salida de contacto integrada

- Programable como contacto límite o salida de impulsos

Compensación de influencias térmicas mediante un medidor de temperatura opcional integrable

Contenido Principios de medida4 1.1 Principio de medida – Caudalímetro Vortex......4 1.2 Sinopsis de los caudalímetros disponibles5 2 3 3.1 3.2 3.3 3.4 Condiciones de referencia para la medida de caudal......8 3.5 3.6 Presión relativa estática en líquidos......9 3.7 3.8 3.9 3.10 3.11 3.12 3.13 Instrucciones de montaje para medida de fluidos con temperaturas > 150 °C (302 °F)12 3.14 Instrucciones de montaje para medida de presión y temperatura......12 3.15 3.16 3.17 3.18 3.19 Pesos 13 4.1 FV4000-VT4/VR4 (TRIO-WIRL V), diseño bridado, DIN16 4.2 4.3 FV4000-VT4/VR4 (TRIO-WIRL V), diseño bridado, ASME18 4.4 5 6 6.1 6.2 6.3 6.4 7 7.1 Versión Ex "ib" / Ex "n" para VT41/ST41 y VR41/SR41 (4 ... 20 mA / HART)27 7.2 Versión Ex "d" / Ex "ib" / Ex "n" para VT42/ST42 y VR42/SR42 (4 ... 20 mA / HART)......29 7.3 Versión FM-Approval para EE.UU. y Canadá, para VT43/ST43 y VR43/SR43 (4 ... 20 mA / HART)31

	7.4	Versión EEX "ia" para VT4A/ST4A y VR4A/SR4A (Feldbus)	34			
8	Info	ormación para pedido	36			
	8.1	Caudalímetro Vortex FV4000-VT4/VR4	36			
	8.2	Caudalímetro Swirl FS4000-ST4/SR4	38			
9	Ac	cesorios	40			
10	0 Cuestionario					

1 Principios de medida

1.1 Principio de medida – Caudalímetro Vortex

La función del caudalímetrio Vortex se basa en la calle de torbellinos de Karmán. En ambos lados del cuerpo perturbador bañado por el fluido en circulación se forman alternativamente torbellinos. Debido a la corriente del fluido, estos torbellinos se desprenden y se forma una calle de torbellinos (calle de torbellinos de Karmán).

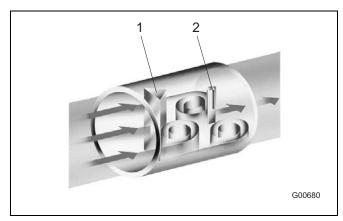


Fig. 1: Principio de medida FV4000

1 Cuerpo perturbador

2 Sensor piezoeléctrico

La frecuencia f del desprendimiento de torbellinos es proporcional a la velocidad de flujo v e inversamente proporcional al ancho del cuerpo perturbador d:

$$f = St \times \frac{v}{d}$$

La magnitud St, denominada 'número de Strouhal', es un parámetro adimensional que determina decisivamente la calidad de la medición Vortex.

Cuando el cuerpo perturbador está dimensionado adecuadamente, el número de Strouhal *St* es constante dentro de un rango muy amplio del número de Reynolds *Re* (Fig. 2).

$$Re = \frac{v \times D}{\vartheta}$$

9 = Viscosidad cinemática:

D = Diámetro nominal del tubo de medida

Por consiguiente, la frecuencia de desprendimiento de torbellinos, la que es objeto de la evaluación, sólo es dependiente de la velocidad de flujo e independiente de la viscosidad y densidad del fluido.

Los cambios de presión locales que acompañan al desprendimiento de torbellinos se detectan mediante un sensor piezoeléctrico y se convierten, en función de la frecuencia de torbellinos, en impulsos eléctricos.

La señal de frecuencia proporcional al caudal emitida por el sensor de caudal se transmite para su procesamiento ulterior al transmisor de medida.

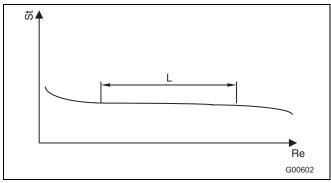


Fig. 2: Número de Strouhal en función del número de Reynolds

St Número de Strouhal

Re Número de Reynolds

L Rango de caudal lineal

1.2 Principio de medida – Caudalímetro Swirl

El cuerpo guía de entrada perturba la corriente de fluido que entra axialmente en el tubo de medida, poniéndola en movimiento de rotación. En el centro de rotación se forma un nucleo de remolino que es forzado, por medio de una corriente inversa, a efectuar una rotación secundaria espiral.

La frecuencia de la rotación secundaria es proporcional al caudal y permanece lineal dentro de un rango de medida muy amplio si el medidor dispone de una geometría interna optimizada. Esta frecuencia se registra mediante un sensor piezoeléctrico. La señal de frecuencia proporcional al caudal emitida por el sensor de caudal se transmite para su procesamiento ulterior al transmisor de medida.

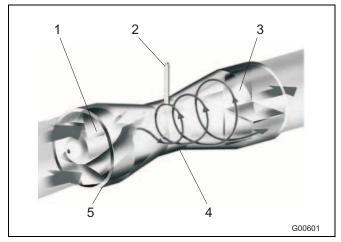


Fig. 3

- 1 Cuerpo guía de entrada
- 2 Sensor piezoeléctrico
- 3 Cuerpo de salida
- Punto de inversión
- 5 Caja

2 Sinopsis de los caudalímetros disponibles

		FV4000-VT4 (TRIO-WIRL VT)	FV4000-VR4 (TRIO-WIRL VR)	FS4000-ST4 (TRIO-WIRL ST)	FS4000-SR4 (TRIO-WIRL SR)
		G00740	G00742	G00741	G00743
Precisión	Líquidos	≤ ± 0,75 % del valor me de refe	,	≤ ± 0,5 % del valor medido bajo condicione: de referencia	
Frecision	Gases y vapores	≤ ± 1 % del valor medio refere			
		DN 15 ≤ ± 0,3 % del valor medido			
Reproducibilidad		DN 15 hasta DN 150 ≤	± 0,2 del valor medido	DN 15 ≤ ± 0,3 % del valor medido	
reproducibilidad		a partir de DN 200 ≤ ± 0,25 % del valor medido		a partir de DN 20 ≤ ±	0,2 del valor medido
Viscosidad permitida pa	Viscosidad permitida para líquidos (si se utiliza		DN 15 ≤ 4 mPa s		N 32 ≤ 5 mPa s
un FS4000 y el valor es		DN 25 ≤ 5 mPa s		DN 40 hasta DN 50 ≤ 10 mPa s	
debe realizarse una cal	libración del campo)	a partir de DN 40 ≤ 7,5 mPa s		a partir de DN 80 ≤ 30 mPa s	
Rango de medida tipico)	1:20		1:25	
Tramos rectos típicos d	le entrada y salida	15 x DN / 5 x DN		3 x DN / 1 x DN	

Sensor

Conexión a proceso	Brida	DN 15 hasta DN 3	00 (1/2" hasta 12")	DN 15 hasta DN 4	00 (1/2" hasta 16")
(DIN, ANSI. JIS)	Diseño Wafer	DN 15 hasta DN 1	150 (1/2" hasta 6")		-
Tipo de sensor	Sensor simple	Sí anaignalma	ente con modidor de tom	poratura intograda (a pe	artir da DN EO)
ripo de serisor	Sensor doble	Sí, opcionalmente con medidor de temperatura integra			artii de DN 50)
Tomporatura dol	Estándar	-55 280 °C	(-67 536 °F)	-55 280 °C	(-67 536 °F)
Temperatura del fluido Temperaturas altas (a partir de DN 25)		-55 400 °C (-67 752 °F)		-	
Modo de protección		IP 65 / IP 67 / Nema 4X			
	Sensor	Acero CrNi, opc. Hast. C / titanio		Acero CrNi, opc. Hast. C / titanio	
Matarialas	Cuerpo de entrada / salida	-		Acero CrNi,	opc. Hast. C
Materiales	Cuerpo perturbador	Acero CrNi, opc. Hast. C			-
	Caja de medida	Acero CrNi, opc. Hast. C		Acero CrNi, opc. Hast. C	
	Junta del sensor	Grafito, Kalrez, Vitón, PTFE		Grafito, Kalrez, Vitón, PTFE	
Sólo FVR4000 o FSR4000	Lóngitud máx. del cable de señal entre el sensor de caudal y el transmisor	-	máx. 10 m (32,8 ft)	-	máx. 10 m (32,8 ft)

Transmisor

Alimentación	con salida analógica de 4 20 mA	14 46 V (Ex ib ≤ 28 V)			
eléctrica	con PROFIBUS PA y FOUNDATION Fieldbus	I < 10 mA (9 32 V; EEx ia ≤ 24 V)			
Diseño del sellado		Dual Seal según ANSI / ISA-12.27.01 (VT42/VT43/ST42/ST43)			
Display 2 x 8 dígitos /2 x 16 dígitos		Indicador / totalizador local con manejo por puntero magnético / parámetros ajustables mediante protocolo HART / PROFIBUS PA / FOUNDATION Fieldbus			
FRAM externa		Sí, para almacenamiento de los datos de parametraje del transmisor y de los datos de calibración del sensor de caudal			
Salida de contacto Salida de contacto (optoacoplador en caso de equipamiento estándar) contacto NAMUR (EEx ia / ib)		Programable como contacto límite (caudal, temperatura), salida de alarma o salida de impulsos			
Cálculo de vapores saturados / compensación de temperatura		Sí, cuando el sensor está equipado con un instrumento medidor de temperatura.			
Comunicación	Protocolo HART, PROFIBUS PA (Perfil 3.0), FOUNDATION Fieldbus				

Diseños

En general, se distingue entre dos tipos de diseño.

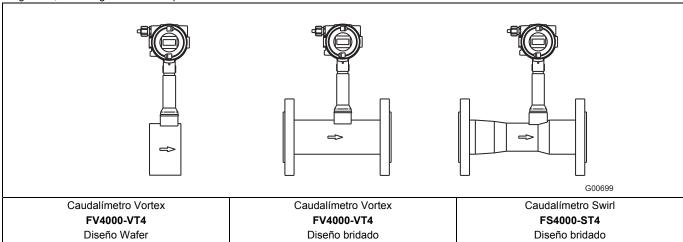


Fig. 4: Diseño compacto: El transmisor está montado directamente sobre el sensor de caudal.

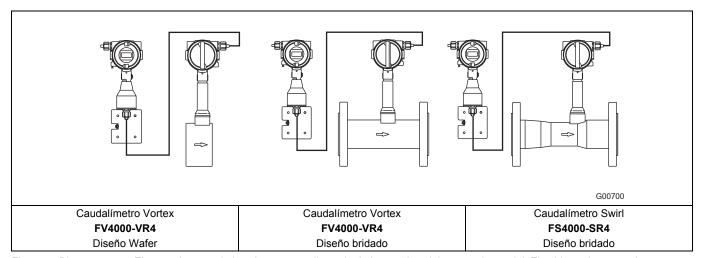


Fig. 5: Diseño remoto: El transmisor puede instalarse a una distancia de hasta 10 m del sensor de caudal. El cable está conectado firmemente al transmisor y puede cortarse según la longitud deseada.

3 Datos técnicos generales

3.1 Elección del diámetro nominal

La elección del diámetro nominal se realizará en función del caudal de funcionamiento Qv máx. Para obtener rangos máximos de medida, éste no debería ser inferior a la mitad del caudal máximo por diámetro nominal (Qv máx DN), pero es posible reducirlo a 0,15 Qv máx DN, aproximadamente. El límite inferior lineal del rango de medida depende del número de Reynolds (ver tolerancias).

Cuando el caudal que se debe medir es un caudal normal (estado normal: 0 °C (32 °F), 1013 mbar) o caudal másico, es necesario convertir el valor correspondiente en un caudal de funcionamiento y seleccionar en las tablas de rangos de medida (Tab. 1, 2, 3) el diámetro nominal más adecuado.

 ρ = Densidad en condiciones de servicio (kg/m³)

 ρ_N = Densidad normal (kg/m³)

P = Presión de servicio (bar)

T = Temperatura de funcionamiento (°C)

Qv = Caudal de funcionamiento (m³/h)

Qn = Caudal normal (m^3/h)

Qm = Caudal másico (kg/h)

η = Viscosidad dinámica (Pas)

v = Viscosidad cinemática (m²/s)

Conversión Densidad normal (ρn) --> Densidad en condiciones de servicio (ρ)

$$\rho = \rho_n \times \frac{1{,}013 + \rho}{1{,}013} \times \frac{273}{273 + 7}$$

2. Conversión en un caudal de funcionamiento (Qv)

a) partiendo del caudal normal (Qn) -->

$$Q_V = Q_n \frac{\rho_n}{\rho} = Q_n \frac{1,013}{1,013 + p} \times \frac{273 + T}{273}$$

b) partiendo del caudal másico (Qm) -->

$$Q_V = \frac{Q_m}{\rho}$$

3. Viscosidad dinámica (η) --> viscosidad cinemática (ν)

$$v = \frac{\eta}{\Omega}$$

Cálculo del número de Reynolds:

$$Re = \frac{Q}{(2827 \cdot v \cdot d)}$$

Q = Caudal en m³/h

d = Diámetro del tubo en (m)

v = viscodiad cinemática m²/s (1cst = 10-6 m²/s)

El número de Reynolds actual puede calcularse también mediante nuestro programa de cálculo AP-Calc.

3.2 Precisión de la medida de caudal

Precisión en porcentajes del valor medido bajo condiciones de referencia (incl. transmisor) en el rango de medida lineal, el cual está limitado por Re mín y Qmáx (véase la tabla "Rangos de medida").

		FV4000-VT4/VR4	FS4000-ST4/SR4	
Líquidos		\leq ± 0,75 %	± 0,5 %	
Gases / Vapor		≤ ± 1 %	± 0,5 %	
Salida de corrie	nte			
Inseguridad medición adicion	de al	< 0,1 %		
Influencia de temperatura		< 0,05 % / 10 K		

Desalineaciones de montaje y desmontaje pueden influir en la precisión de medida.

En caso de desviaciones de las condiciones de referencia pueden producirse desviaciones de medida adicionales.

3.2.1 Repetibilidad en porcentajes del valor medido

DN	Inch	FV4000- VT4/VR4	FS4000- ST4/SR4
15	1/2"	0,3 %	
25 250	1" 6"	0,2 %	
200 300	8" 12"	0,25 %	0,2 %

3.3 Precisión de la medida de temperatura

Desviación del valor medido (incl. Transmisor)

± 2 °C (35,6 °F)

Repetibilidad

≤ 0,2 % del valor medido

Programa de elección de productos y diseños

¡Importante!

Para la elección de un caudalímetro apropiado en función de una aplicación existente, ABB facilita gratuitamente el programa "AP-Calc". El programa funciona bajo Microsoft WINDOWS ®.

3.4 Condiciones de referencia para la medida de caudal

	FV4000-VT4/VR4	FS4000-ST4/SR4			
Rango de medida ajustado	0,5 1 x 0	0,5 1 x QvmáxDN			
Temperatura ambiente	20 °C (68	3 °F) ± 2K			
Humedad del aire	65 % humedad	d relativa ± 5 %			
Presión de aire	86 1	06 kPa			
Alimentación eléctrica	24 V	/ DC			
Longitud del cable de señal	10 m (32,8 ft) (sólo FV4	10 m (32,8 ft) (sólo FV4000-VR o FS4000-SR)			
Carga – salida de corriente	250 Ω (sólo pa	250 Ω (sólo para 4 20 mA)			
Fluido de calibración	Agua: ~ 20 °C (68	°F), 2 bar (29 psi)			
Diámetro nominal interior del tramo de calibración	= Diámetro nominal	interior del aparato			
Tramo recto de entrada, sin perturbaciones	15 x DN	15 x DN 3 x DN			
Tramo de salida	5 x DN 1 x DN				
Medida de presión	3 5 x DN det	3 5 x DN detrás del aparato			
Medida de temperatura	2 3 x DN en el tramo de salida detrás del medidor de temperatura				

3.5 Caudales FV4000-VT4 / VR4

3.5.1 Caudales - Líquidos

			Tubo DIN		Tubo ANSI			
_	N	Re mín	Q _v máxDN	Frecuencia	Re mín	Q _v máxDN	Q _v máxDN	Frecuencia
	'IN		(m ³ /h)	(Hz)		(m ³ /h)	(US gal/min)	(Hz)
				con Q _v máx				con Q _v máx
15	1/2"	10000	6	370	11000	5,5	24	450
25	1"	20000	18	240	23000	18	79	400
40	1 1/2"	20000	48	270	23000	48	211	270
50	2"	20000	70	180	22000	66	291	176
80	3"	43000	170	140	48000	160	704	128
100	4"	33000	270	100	44000	216	951	75
150	6"	67000	630	50	80000	530	2334	50
200	8"	120000	1100	45	128000	935	4117	40
250	10"	96000	1700	29	115000	1445	6362	36
300	12"	155000	2400	26	157000	2040	8982	23

Los caudales indicados se refieren a líquidos con una temperatura de 20 °C (68 °F), 1013 mbar (14,69 psi), ρ = 998 kg/m³ (62,30 lb/ft³).

3.5.2 Caudales - Gases / Vapor

		Tubo DIN			Tubo ANSI			
D	N	Re mín	Q _v máxDN (m³/h)	Frecuencia (Hz) con Q _v máx	Re mín	Q _v máxDN (m³/h)	Q _v máxDN (ft³/min)	Frecuencia (Hz) con Q _v máx
15	1/2"	10000	24	1520	11000	22	13	1980
25	1"	20000	150	2040	23000	82	48	1850
40	1 1/2"	20000	390	2120	23000	340	200	1370
50	2"	20000	500	1200	22000	450	265	1180
80	3"	43000	1200	1000	48000	950	559	780
100	4"	33000	1900	700	44000	1800	1059	635
150	6"	67000	4500	480	80000	4050	2384	405
200	8"	120000	8000	285	128000	6800	4002	240
250	10"	96000	14000	260	115000	12000	7063	225
300	12"	155000	20000	217	157000	17000	10006	195

Los caudales indicados se refieren a gases con ρ = 1,2 kg/m³ (0,075 lb/ft³)

3.6 Caudales FS4000-ST4 / SR4

3.6.1 Caudales - Líquidos

	ON	Re mín	Q _v máxDN (m³/h)	Q _v máxDN (US gal/min)	Frecuencia (Hz) a Q _v máxDN
15	1/2"	2100	1,6	7,0	185
20	3/4"	3500	2	8,8	100
25	1"	5200	6	26	135
32	1 1/4"	7600	10	44	107
40	1 1/2"	13500	16	70	110
50	2"	17300	25	110	90
80	3"	15000	100	440	78
100	4"	17500	150	660	77
150	6"	43000	370	1620	50
200	8"	44000	500	2200	30
300	12"	115000	1000	4400	16
400	16"	160000	1800	7920	13

Los caudales indicados se refieren a líquidos con una temperatura de 20 °C (68 °F), 1013 mbar (14,69 psi), ν = 1 cSt, ρ = 998 kg/m³ (62,30 lb/ft³).

3.6.2 Caudales - Gases / Vapor

	DN	Re mín	Q _V máxDN (m³/h)	Q _V máxDN (ft³/min)	Frecuencia (Hz) a Q _V máxDN
15	1/2"	2100	16	9,4	1900
20	3/4"	3500	25	14	1200
25	1"	5200	50	29	1200
32	1 1/4"	7600	130	76	1300
40	1 1/2"	13500	200	117	1400
50	2"	17300	350	206	1200
80	3"	15000	850	500	690
100	4"	17500	1500	882	700
150	6"	43000	3600	2110	470
200	8"	44000	4900	2880	320
300	12"	115000	10000	5880	160
400	16"	160000	20000	11770	150

Caudal de gas / vapor con ρ = 1,2 kg/m³ (0,075 lb/ft³)

Las frecuencias indicadas sólo sirven de orientación. Para los diámetros nominales y diseños individuales se indica el rango dentro del cual se encuentran las frecuencias típicas.

3.7 Presión relativa estática en líquidos

Para evitar efectos de cavitación durante la medida de líquidos se necesita una sobrepresión estática (presión posterior) en la tubería saliente del aparato. Para estimar esta presión puede utilizarse la siguiente ecuación:

$$p_2 \ge 1.3 \times p_{Dampf} + 2.6 \times \Delta p'$$

p₂ = Sobrepresión estática en la tubería saliente del aparato (mbar)

 $\rho_{\textit{Dampf}}$ = Presión del vapor del líquido a la temperatura de funcionamiento (mbar)

 $\Delta p'$ = Pérdida de presión del fluido (mbar)

3.8 Capacidad de sobrecarga

Gases

un 15 % sobre el caudal máximo

Líquidos

un 15 % sobre el caudal máximo (¡Deben evitarse efectos de cavitación!)

3.9 Temperatura del fluido

i

|Importante!

Siga las indicaciones del capítulo "Protección contra explosión".

Respete el rango de temperatura permitido de la junta instalada.

	FV4000-VT4/VR4	FS4000-ST4/SR4	
Estándar	-55 280 °C (-67 536 °F)		
Modelo HT	-55 400 °C	-	
IVIOUEIO ITI	(-67 752 °F)		

3.10 Aislamiento del caudalímetro

La altura máxima del aislamiento de la tubería no debe ser superior a 100 mm (4 inch), contado desde el borde superior.

Utilización de traceados eléctricos

Los traceados eléctricos pueden utilizarse bajo las siguientes condiciones:

- Cuando están montados firmemente sobre o alrededor de la tubería.
- Cuando la tubería está aislada y se encuentran dentro del aislamiento de la tubería (no debe sobrepasarse la altura máx. de 100 mm (4 inch).
- Cuando la temperatura máx. del traceado eléctrico es ≤ a la temperatura máx. del fluido.

¡Se deberán cumplir las disposiciones de instalación de la norma EN 60079-14!

Hay que tener en cuenta que el uso de traceados eléctricos no tiene influencia negativa sobre la protección CEM ni causa vibraciones adicionales.

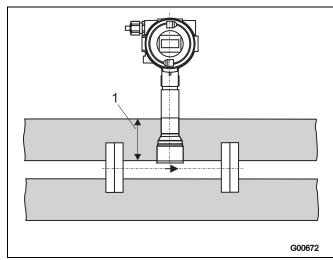


Fig. 6: Aislamiento del caudalímetro

1 Máximo: 100 mm (4 inch)

3.11 Condiciones ambientales

Resistencia al clima conforme a DIN 40040

Rango de temperatura ambiente permitido

Protección EX / modelo	Rango de temperatura
Ninguno /	-20 70 °C (-4 158 °F)
VT40 y VR40 / ST40 y SR40	-55 70 °C (-67 158 °F)
Ex ib /	-20 70 °C (-4 158 °F) ¹⁾
VT41 y VR41 / ST41 y SR41	-40 70 °C (-67 158 °F) ¹⁾
Ex ia /	-20 60 °C (-4 140 °F)
VT4A y VR4A / ST4A y SR4A	-30 60 °C (-40 140 °F)
Ex d /	-20 60 °C (-4 140 °F)
VT42 y VR42 / ST42 y SR42	-40 60 °C (-40 140 °F)
_C FM _{US} /	-20 70 °C (-4 158 °F)
VT43 y VR43 / ST43 y SR43	-45 70 °C (-49 158 °F)

¹⁾ Categoría 2D (Ex polvo) máximo: 60° C (140° F)

Humedad atmosférica admisible

Diseño	Humedad
Estándar	Humedad relativa máx. 85 %,
	promedio anual ≤ 65 %
Resistente al clima	Humedad relativa
	≤ 100 %, permanentemente

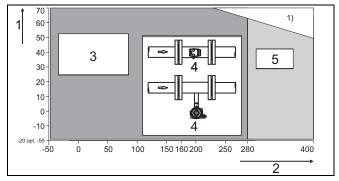


Fig. 7: Temperatura del fluido en función de la temperatura ambiente

- 1 Temperatura ambiente
- 2 Temperatura del fluido
- 3 Rango de temperatura permitido para el diseño estándar (≤ 280 °C (≤ 536 °F))
- Instalación para temperaturas del fluido
 > 150 °C (302 °F)
- 5 Diseño HT (≤ 400 °C (≤ 752 °F)), sólo FV4000-VT4
- 1) Para el circuito de alimentación eléctrica (terminales 31 / 32) y la salida de contacto 41, 42 puedenutilizarse, sin limitación alguna, cables para temperaturas de hasta T = 110 °C (230 °F). Los cables para temperaturas inferiores de hasta T = 80 °C (176 °F) limitan los rangos de temperatura. Estas limitaciones afectan también al diseño remoto (variante VR) y la versión PROFIBUS PA con puerto de conexión.

i

¡Importante!

En caso de temperaturas < 0 °C (< 32 °F) o > 55 °C (> 131 °F) es posible que se reduzca la legibilidad de la información en la pantalla. Sin embargo, esto no afecta a la funcionalidad del medidor y de las salidas. Para temperaturas ambiente < -20 °C (< -4 °F) véase la información para pedido.

Siga las indicaciones del capítulo 7 "Datos técnicos relativos a la protección Ex del transmisor"

3.12 Requisitos de montaje

Los caudalímetros vortex o swirl pueden instalarse en cualquier punto del sistema de tuberías. Sin embargo, deberán cumplirse las siguientes condiciones de instalación:

- · Las condiciones ambientales prescritas
- · Las recomendaciones para los tramos rectos de entrada y salida
- El sentido de caudal debe corresponder con la señalización (ver flecha estampada sobre la caja del sensor de caudal).
- Se deberá mantener la distancia mínima necesaria para poder desmontar el transmisor y cambiar la sonda.
- Se deberán evitar oscilaciones mecánicas de la tubería (vibraciones). Instalar un dispositivo de apoyo, si es necesario.
- El diámetro interior del sensor de caudal debe corresponder con el diámetro interior de la tubería.
- En sistemas de tuberías largas deberán evitarse oscilaciones de presión en caso de caudal cero. Instalar compuertas intermedias, si es necesario
- Reducción de caudales alternantes (pulsantes) por medio de dispositivos amortiguadores apropiados en caso de alimentación mediante bomba de pistón o compresor. La pulsación restante no debe superar el 10 %. La frecuencia del dispositivo alimentador no debe encontrarse en el rango de la frecuencia de medida del caudalímetro instalado.
- Las válvulas / compuertas deberían estar colocadas normalmente en sentido de flujo y detrás del caudalímetro (valor típico: 3 x DN). Si la alimentación de fluido se realiza mediante bombas de pistón, bombas de émbolo buzo o compresores (presiónes de líquidos > 10 bar (145 psi)), es posible, cuando la válvula está cerrada, que en la tubería se produzcan oscilaciones hidráulicas del fluido. En este caso es imprescindible instalar la válvula en sentido de flujo y delante del caudalímetro. Si es necesario, prever dispositivos apropiados de amortiguación (p. ej., depósito de aire).
- Durante la medida de líquidos hay que asegurarse que el tubo de medida esté lleno de fluido y no pueda vaciarse completamente.
- Durante la medida de líquidos o vapores no deben producirse efectos de cavitación.
- Es necesario tener en cuenta la relación entre el fluido y la temperatura ambiente (véase el apartado "Condiciones ambientales" del capítulo "Datos técnicos").
- Si los fluidos se calientan a temperaturas superiores a 150 °C (302 °F)), el sensor de caudal deberá instalarse de tal forma que la unidad electrónica esté orientada hacia un lado o hacia abajo.

3.13 Tramos de entrada y salida recomendados

3.13.1 Caudalímetro Vortex

Para garantizar la plena seguridad funcional es necesario que el perfil de corriente no presente, en lo posible, perturbaciones por el lado de la tubería de entrada. Deberá preverse un tramo recto que sea 15 veces el diámetro nominal, aproximadamente. En tuberías con codos, el tramo de entrada debería ser al menos 25 veces, en tuberías con codos de 2x90° 40 veces y en tuberías con válvulas de cierre 50 veces el diámetro nominal. El tramo recto en el lado de salida debería ser 5 veces el diámetro nominal.

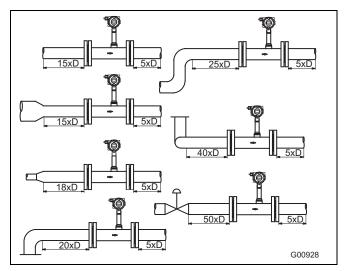


Fig. 8: Tramos de entrada y salida recomendados

3.13.2 Caudalímetro Swirl

Debido a su principio de funcionamiento, el caudalímetro Swirl funciona casi sin tramos de entrada y salida. La figura siguiente muestra los tramos de entrada y salida recomendados para instalaciones distintas. No se necesitan tramos rectos de entrada y salida si el radio de curvatura de los codos simples o dobles instalados delante y detrás del aparato es superior a 1,8 x D. Igualmente, detrás de piezas de reducción con conos reductores conforme a DIN 28545 ($\alpha/2=8^{\circ}$) no se necesita instalar un tramo de entrada y salida adicional.

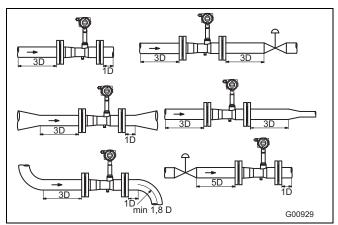


Fig. 9: Tramos de entrada y salida recomendados

3.14 Instrucciones de montaje para medida de fluidos con temperaturas > 150 °C (302 °F)

Si los fluidos se calientan a temperaturas superiores a 150 °C (302 °F), el sensor de caudal deberá instalarse de tal forma que el transmisor esté orientado hacia un lado o hacia abajo (véase la figura siguiente).

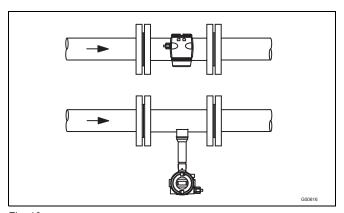


Fig. 10

3.15 Instrucciones de montaje para medida de presión y temperatura

Para medir las temperaturas directamente, el caudalímetro puede equiparse opcionalmente con un PT100. Este medidor de temperatura permite, p. ej., controlar la temperatura del fluido o medir vapores saturados y expresar los resultados directamente en unidades de masa.

Si la compensación de la presión y temperatura debe realizarse externamente (p. ej., mediante el "Sensycal"), los puntos de medición deben instalarse como se muestra en la figura siguiente.

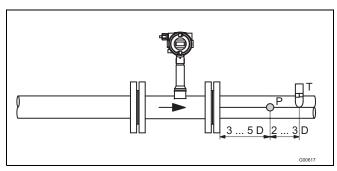


Fig. 11: Posición de los puntos de medición de temperatura y presión

3.16 Instalación de dispositivos de regulación

Los dispositivos de regulación y ajuste en el lado de salida deben colocarse con una distancia mínima de $5\ x$ DN.

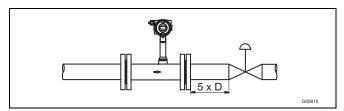


Fig. 12: Instalación de dispositivos de regulación

Si la alimentación de fluido se realiza mediante bombas de pistón, bombas de émbolo buzo o compresores (presiónes de líquidos > 10 bar (145 psi)), es posible, cuando la válvula está cerrada, que en la tubería se produzcan oscilaciones hidráulicas del fluido. En este caso es imprescindible instalar la válvula en sentido de flujo y delante del caudalímetro. Para este fin se recomienda, especialmente, el caudalímetro Swirl FS4000. Si es necesario, prever dispositivos apropiados de amortiguación (p. ej., depósito de aire en caso de alimentación por compresores).

3.17 Conexiones a proceso

	Diseño bridado		Diseño Wafer	
	Conexión a proceso	Presión de servicio	Conexión a proceso	Presión de servicio
FV4000-VT4/VR4	DN15 DN300	Junta tórica:	DN25 DN150	Junta tórica:
		DIN PN 10 PN 40, opcional hasta PN 160		DIN PN 64, opcional hasta PN 100
		ASME Class 150 / 300, opcional hasta 900 lb		ASME Class 150 / 300, opcional hasta 600 lb
		Junta plana (grafito):		Junta plana (grafito):
		Hasta PN 64 / ASME Class 300 lb		Hasta PN 64 / ASME Class 300 lb
FS4000-ST4/SR4	DN 15 DN 200 ¹⁾	DIN PN 10 PN 40	-	-
		ASME Class 150/300		
	DN 300 DN 400 ¹⁾	DIN PN 10 PN 16		
		ASME Class 150		

¹⁾ Otros diseños bajo demanda.

3.18 Materiales

Components	Material	Rango de temperatura			
Componente	Materiai	FV4000-VT4/VR4	FS4000-ST4/SR4		
Caja de medida	Acero CrNi 1.4571 / CF8C,				
	opcional: Hastelloy C				
Cuerpo perturbador /	Acero CrNi 1.4571 / CF8C,				
Cuerpo guía de entrada / salida	opcional: Hastelloy C				
Sensor	Acero CrNi 1.4571 / CF8C,				
	opcional: Hastelloy C				
Junta del sensor 1)	Kalrez (3018) junta tórica	0 280 °C (32 536 °F)	0 280 °C (32 536 °F)		
	Kalrez (6375) junta tórica	-20 275 °C (-4 527 °F)	20 275 °C (68 527 °F)		
	Junta tórica de Vitón	-55 230 °C (-67 446 °F)	-55 230 °C (-67 446 °F)		
	Junta tórica de PTFE	-55 200 °C (-67 392 °F)	-55 200 °C (-67 392 °F)		
	Grafito	-55 280 °C (-67 536 °F)	-55 280 °C (-67 536 °F)		
	Grafito especial	-55 400 °C (-67 752 °F)	-		
		(Temperaturas altas)			
Caja, componente electrónico	Aluminio fundido a presión, pintado				

¹⁾ Otros diseños bajo demanda.

3.19 Pesos

Los pesos se indican en las tablas del capítulo "Medidas y pesos".

3.19.1 Presiones de servicio permitidas FV4000

Conexión a proceso - Brida DIN

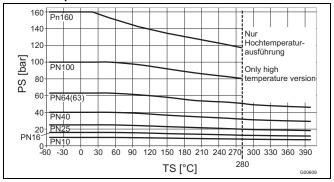


Fig. 13: Sólo modelo de alta temperatura, versión FV4000 (TRIO-WIRL VT / VR)

PS Presión (bar)

TS Temperatura (°C)

Conexión a proceso - Brida ASME

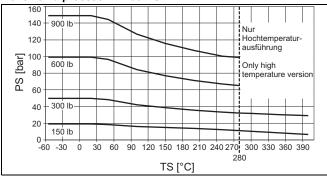


Fig. 14: Sólo modelo de alta temperatura, versión FV4000 (TRIO-WIRL VT / VR)

PS Presión (bar)

TS Temperatura (°C)

Brida aséptica conforme a DIN 11864-2

DN 25 hasta DN 40:

 ${\rm PS}$ = 25 bar hasta TS = 140 $^{\circ}{\rm C}$ si se utilizan materiales de junta adecuados

• DN 50 y DN 80:

PS = 16 bar hasta TS = 140 $^{\circ}C$ si se utilizan materiales de junta adecuados

Conexión a proceso - Diseño Wafer según DIN

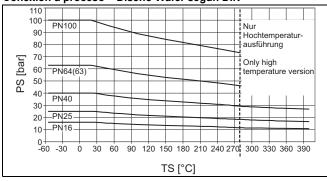


Fig. 15: Sólo modelo de alta temperatura

PS Presión (bar)

TS Temperatura (°C)

Conexión a proceso - Diseño Wafer según ASME

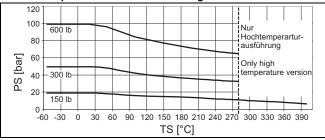


Fig. 16: Sólo modelo de alta temperatura

PS Presión (bar)

TS Temperatura (°C)

3.19.2 Presiones de servicio permitidas FS4000

Conexión a proceso - Brida DIN

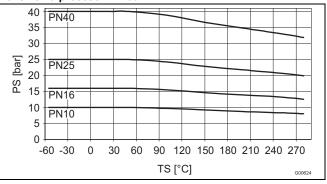


Fig. 17

PS Presión (bar)

TS Temperatura (°C)

Conexión a proceso - Brida ASME

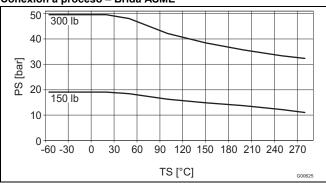


Fig. 18

PS Presión (bar)

TS Temperatura (°C)

4 Dimensiones

4.1 FV4000-VT4/VR4 (TRIO-WIRL V), diseño Wafer

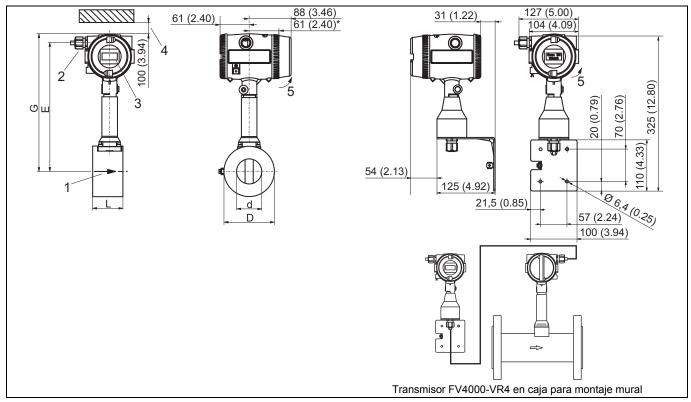


Fig. 19: Medidas en mm (inch), proyección según método ISO E

- Sentido de flujo
- 2 Alimentación de corriente
- 3 Display, sólo para versión VT4
- *) Medida reducida para la versión VR4 con transmisores separados
- 4 Se deberá mantener la distancia mínima necesaria para poder desmontar el transmisor y cambiar la sonda.
- 5 orientable en 330°

Diámetro Presión		Medidas en mm (inch)					
nominal	nominal	L	L E		G	d	Peso en kg (lb)
DN	PN	T _{máx} 280 °C (536 °F)	_	D	9	u	eli kg (ib)
25	64	65 (2,56)	274 (10,79)	73 (2,87)	293 (11,54)	28,5 (1,12)	4,1 (9,0)
40	64	65 (2,56)	290 (11,42)	94 (3,70)	309 (12,17)	43 (1,69)	4,8 (10,6)
50	64	65 (2,56)	298 (11,73)	109 (4,29)	317 (12,48)	54,4 (2,14)	5,6 (12,4)
80	64	65 (2,56)	312 (12,28)	144 (5,67)	331 (13,03)	82,4 (3,24)	7,6 (16,8)
100	64	65 (2,56)	320 (12,6)	164 (6,46)	339 (13,35)	106,8 (4,20)	8,5 (18,7)
150	64	65 (2,56)	352 (13,86)	220 (8,66)	371 (14,61)	159,3 (6,27)	13 (28,7)

Diámetro	Presión no	minal (PN)		Medidas en mm (inch)												
nominal			L	Е	D	G	d	Peso								
DN	Lb	Schedule	T _{máx} 280 °C	_	_	_	_	_	_	_	_	_	Ь	9	u	en kg (lb)
1"	300	80	112,5 (4,43)	284 (11,18)	70,5 (2,78)	303 (11,93)	24,3 (0,96)	5,1 (11,2)								
1 1/2"	300	80	113 (4,45)	290 (11,42)	89,5 (3,52)	309 (12,17)	38,1 (1,50)	6,1 (13,5)								
2"	150 / 300	80	112,5 (4,43)	296 (11,65)	106,5 (4,19)	315 (12,40)	49,2 (1,94)	8,4 (18,5)								
3"	300	80	111 (4,37)	312 (12,28)	138,5 (5,45)	331 (13,03)	73,7 (2,90)	11,2 (24,7)								
4"	300	80	116 (4,57)	325 (12,80)	176,5 (6,95)	344 (13,54)	97,2 (3,83)	17,2 (37,9)								
6"	300	80	137 (5,39)	352 (13,86)	222,2 (8,75)	371 (14,61)	146,4 (5,76)	25,7 (56,7)								

4.2 FV4000-VT4/VR4 (TRIO-WIRL V), diseño bridado, DIN

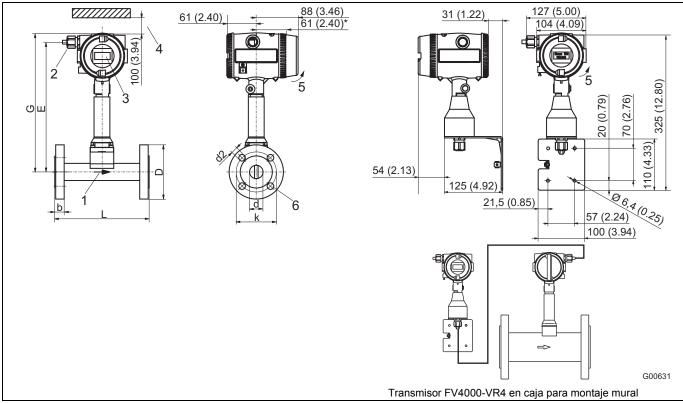


Fig. 20: Medidas en mm (inch), proyección según método ISO E

- Sentido de flujo
- Alimentación de corriente
- Display, sólo para versión VT4
- *) Medida reducida para la versión VR4 con transmisores separados
- Se deberá mantener la distancia mínima necesaria para poder desmontar el transmisor y cambiar la sonda. orientable en 330°
- Número de agujeros N

Medidas en mm (inch)						
Diámetro nominal DN	Presión nominal DN	L 1)	E	D	G	Peso en kg (lb)
		280 °C/536 °F				
	10 40	200 (7,87)		95 (3,74)		4,5 (9,9)
15	64 / 100	200 (7,87)	296 (11,65)	105 (4,13)	315 (12.40)	5,4 (11,9)
	160	200 (7,87)		105 (4,13)		5,4 (11,9)
	10 40	200 (7,87)		115 (4,53)		5,1 (11,2)
25	64		313 (12,32)		332 (13.07)	
	100	210 (8,27)	010 (12,02)	140 (5,51)	002 (10.01)	7,8 (17,2)
	160					
	10 40	200 (7,87)		150 (5,91)		6,6 (14,6)
40	64	220 (8,66)	291 (11,46)	170 (6,69)	310 (12.20)	10,1 (22,3)
	100	220 (8,66)		, , ,	0.0 (.2.20)	
	160	225 (8,86)		170 (6,69)		10,5 (23,2)
	10 40	200 (7,87)		165 (6,50)		8,7 (19,2)
50	64	220 (8,66)	298 (11,73)	180 (7,09)	317 (12.48)	12,2 (26,9)
	100	230 (9,06)	200 (11,10)	195 (7,68)	017 (12.10)	15,1 (33,3)
	160	245 (9,65)		195 (7,68)		15,6 (34,4)
	10 40	200 (7,87)		200 (7,87)		13,1 (28,9)
80	64	250 (9,84)	316 (12,44)	215 (8,46)	335 (13.19)	17 (37,5)
00	100	260 (10,24)	010 (12,44)	230 (9,06)		21,4 (47,2)
	160	280 (11,02)		230 (9,06)		22,9 (50,5)
	10 16	250 (9,84)		220 (8,66)		14 (30,9)
	25 40	250 (9,84)		235 (9,25)		17,8 (39,2)
100	64	270 (10,63)	325 (12,80)	250 (9,84)	344 (13.54)	24,1 (53,1)
	100	300 (11,81)		265 (10,43)		32,2 (71,0)
	160	320 (12,60)		265 (10,43)		34,4 (75,9)
	10 16	300 (11,81)		285 (11,22)		25,4 (56,0)
	25 40	300 (11,81)		300 (11,81)		33,6 (74,1)
150	64	330 (12,99)	352 (13,86)	345 (13,58)	371 (14.61)	53,8 (118,6)
	100	370 (14,57)		355 (13,98)		70,4 (155,2)
	160	390 (15,35)		355 (13,98)		75 (165,4)
	10	350 (13,78)		340 (13,39)		45,3 (99,9)
	16	350 (13,78)		340 (13,39)		45,3 (99,9)
200	25	350 (13,78)	414 (16,30)	360 (14,17)	433 (17.05)	66,3 (146,2)
	40	350 (13,78)		375 (14,76)		66,3 (146,2)
	64	370 (14,57)		415 (16,34)		93,1 (205,3)
	10 / 16	450 (17,72)		395 / 405 (15,55 / 15,94)	,	67,4 (148,6)
250	25 / 40	450 (17,72)	439 (17,28)	425 / 450 (16,73 / 17,72)	458 (18.03)	106,4 (234,6)
	64	450 (17,72)		470 (18,50)		135,6 (299,0)
_	10 / 16	500 (19,69)		445 / 460 (17,52 / 18,11)		77,2 (170,2)
300	25 / 40	500 (19,69)	464 (18,27)	485 / 515 (19,09 / 20,28)	483 (19.02)	123,2 (271,6)
	64	500 (19,69)		530 (20,87)		170,6 (376,1)

¹⁾ Tolerancia de medida: DN 15 ... DN 200 +0 / -3 mm; DN 300 ... DN 400: +0 / -5 mm

4.3 FV4000-VT4/VR4 (TRIO-WIRL V), diseño bridado, ASME

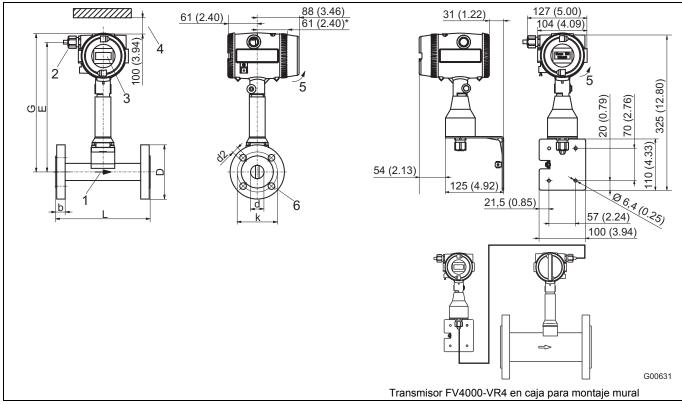


Fig. 21: Medidas en mm (inch), proyección según método ISO E

- Sentido de flujo
- Alimentación de corriente
- Display, sólo para versión VT4
- *) Medida reducida para la versión VR4 con transmisores separados
- Se deberá mantener la distancia mínima necesaria para poder desmontar el transmisor y cambiar la sonda. orientable en 330°
- Número de agujeros N

Diámetro		nominal					
nominal	(F	PN)	L				Peso
DN	lb	Schedule	T _{máx} 280 C / 536 °F	E	D	G	en kg (lb)
	150	40	200 (7,87)		88,9 (3,5)		5,0 (11)
1/2"	300	40	200 (7,87)	296 (11,65)	95,2 (3,75)	315 (12,4)	5,1 (11,2)
1/2	600	40	200 (7,87)	200 (11,00)	95,3 (3,75)	313 (12,4)	5,2 (11,5)
	900	40	200 (7,87)		120,6 (4,75)		7,9 (17,4)
	150	80	200 (7,87)		108 (4,25)		5,7 (12,6)
1"	300	80	200 (7,87)	313 (12,32)	124 (4,88)	332 (13,07)	6,7 (14,8)
'	600	80	200 (7,87)	313 (12,32)	124 (4,88)	332 (13,07)	7,3 (16,1)
	900	80	240 (9,45)		149,3 (5,88)		11,2 (24,7)
	150	80	200 (7,87)		127 (5,0)		8,5 (18,7)
1 1/2"	300	80	200 (7,87)	291 (11,46)	155,6 (6,13)	310 (12,2)	10,9 (24)
1 1/2	600	80	235 (9,25)	291 (11,40)	155,6 (6,13)	310 (12,2)	12,1 (26,7)
	900	80	260 (10,24)		177,8 (7,0)		17,0 (37,5)
	150	80	200 (7,87)		152,4 (6,0)		10,1 (22,3)
0"	300	80	200 (7,87)	200 (44 72)	165 (6,5)	317 (12,8)	11,7 (25,8)
2"	600	80	240 (9,45)	298 (11,73)	165 (6,5)		13,6 (30)
	900	80	300 (11,81)		215,9 (8,5)		26,5 (58,4)
	150	80	200 (7,87)		190,5 (7,5)	335 (13,19)	17,6 (38,8)
3"	300	80	200 (7,87)	040 (40 44)	209,5 (8,25)		21,7 (47,8)
3"	600	80	265 (10,43)	316 (12,44)	209,5 (8,25)		25,8 (56,9)
	900	80	305 (12,01)		241,3 (9,5)		35,0 (77,2)
	150	80	250 (9,84)		228,6 (9,0)		20,1 (44,3)
4"	300	80	250 (9,84)	005 (40.0)	254 (10,0)	344 (13,54)	28,8 (63,5)
4"	600	80	315 (12,40)	325 (12,8)	273,1 (10,75)		41,4 (91,3)
	900	80	340 (13,39)		292,1 (11,5)		51,4 (113,3)
	150	80	300 (11,81)		279,4 (11,0)		32,8 (72,3)
6"	300	80	300 (11,81)	252 (42 96)	317,5 (12,5)	271 (14 61)	49,8 (109,8)
О	600	80	365 (14,37)	352 (13,86)	355,6 (14)	371 (14,61)	81,6 (179,9)
	900	80	410 (16,14)		381 (15)		106,8 (235,5)
	150	80	350 (13,78)		343 (13,5)		
8"	300	80	350 (13,78)	444 (40 20)	381 (15)	400 (47.05)	
8	600	80	415 (16,34)	414 (16,30)	419,1 (16,5)	433 (17,05)	
	900	80	470 (18,5)		469,9 (18,5)		
	150	40	450 (17,72)		406,4 (16)		
10"	300	40	450 (17,72)	439 (17,28)	444,5 (17,5)	458 (18,03)	
	600	80	470 (18,50)		508 (20)		
	150	40	500 (19,69)		482,6 (19)		
12"	300	40	500 (19,69)	464 (18,27)	520,7 (20,5)	483 (19,02)	
	600	80	500 (19,69)		558,8 (22)		

4.4 FS4000-ST4/SR4 (TRIO-WIRL S)

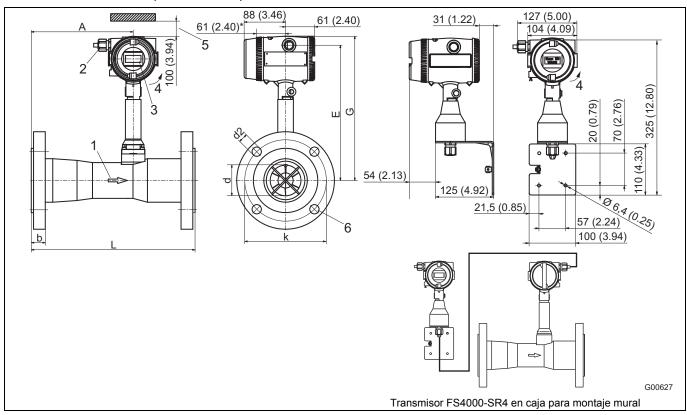


Fig. 22: Todas las medidas en mm (inch), proyección según método ISO E

- 1 Sentido de flujo
- 2 Alimentación de corriente
- 3 Display, sólo para versión ST4

- 4 orientable en 330°
- 5 Se deberá mantener la distancia mínima necesaria para poder desmontar el transmisor y cambiar la sonda.
- 6 Número de agujeros N

*) Medida reducida para la versión SR4 con transmisores separados

Diámetro	Presión			Medidas er	mm (inch)			Peso
nominal DN	nominal PN	L 1)	G	E	Α	D	d	en kg (lb)
15	10 40	200 (7,87)	319 (12,56)	300 (11,81)	83 (3,27)	95 (3,74)	17,3 (0,68)	5,8 (12,8)
20	10 40	200 (7,87)	322 (12,68)	303 (11,93)	68 (2,68)	105 (4,13)	22,6 (0,89)	2,4 (5,3)
25	10 40	150 (5,91)	321 (12,64)	302 (11,89)	67 (2,64)	115 (4,53)	28,1 (1,11)	3,5 (7,7)
32	10 40	150 (5,91)	319 (12,56)	300 (11,81)	68 (2,68)	140 (5,51)	37,1 (1,46)	4,7 (10,4)
40	10 40	200 (7,87)	323 (12,72)	304 (11,97)	79 (3,11)	150 (5,91)	42,1 (1,66)	8 (17,6)
50	10 40	200 (7,87)	326 (12,83)	307 (12,09)	106 (4,17)	165 (6,50)	51,1 (2,01)	7,2 (15,9)
80	10 40	300 (11,81)	329 (12,95)	310 (12,20)	159 (6,26)	200 (7,87)	82,6 (3,25)	12,2 (26,9)
100	10 16	350 (13,78)	333 (13,11)	314 (12,36)	189 (7,44)	220 (8,66)	101,1 (3,98)	14,2 (31,3)
100	25 40	350 (13,78)	333 (13,11)	314 (12,30)	189 (7,44)	235 (9,25)	101 (3,98)	18 (39,7)
150	10 16	480 (18,90)	357 (14,06)	338 (13,31)	328 (12,91)	285 (11,22)	150,1 (5,91)	28,5 (62,8)
130	25 40	480 (18,90)	337 (14,00)	336 (13,31)	328 (12,91)	300 (11,81)	150,1 (5,91)	34,5 (76,1)
	10 / 16	600 (23,62)			436 (17,17)	340 (13,39)	203,1 (8,00)	50 (110,2)
200	25 / 40	600 (23,62)	377 (14,84)	358 (14,09)	436 (17,17)	360 /375 (14,17 /14,76)	203,1 (8,00)	59 /66 (130,1 /145,5)
300	10 / 16	1000 (39,37)	423 (16,65)	404 (15,91)	662 (26,06)	445 /460 (17,52 /18,11)	309,7 (12,19)	171 /186 (377,0 /410,1)
400	10 / 16	1274 (50,16)	459 (18,07)	440 (17,32)	841 (33,11)	565 /580 (22,24 /22,83)	390,4 (15,37)	245 /266 540,1 /586,4

¹⁾ Tolerancia de medida: DN 15 ... DN 200 +0 / -3 mm; DN 300 ... DN 400: +0 / -5 mm

Diámetro	Presión			Medidas er	n mm (inch)			Peso
nominal DN	nominal lb	L 1)	G	E	Α	D	d	en kg (lb)
1/2"	150	200 (7,87)	240 (42 56)	200 (44 94)	83 (3,27)	88,9 (3,5)	15.9 (0.60)	5,3 (11,7)
1/2	300	200 (7,87)	319 (12,56)	300 (11,81)	83 (3,27)	95,2 (3,75)	15,8 (0,62)	5,8 (12,8)
3/4"	150	220 (8,66)	222 (42 60)	202 (44 02)	68 (2,68)	98,4 (3,87)	22,6 (0,89)	2,1 (4,6)
3/4	300	230 (9,06)	322 (12,68)	303 (11,93)	68 (2,68)	117,5 (4,63)	22,6 (0,89)	3,0 (6,6)
1"	150	150 (5,91)	224 (42.04)	202 (44 00)	67 (2,64)	108 (4,25)	28,1 (1,1)	3,4 (7,5)
ı	300	150 (5,91)	321 (12,64)	302 (11,89)	67 (2,64)	124 (4,88)	28,1 (1,1)	3,6 (7,9)
4 4/4"	150	150 (5,91)	240 (42 50)	200 (44 04)	68 (2,68)	118 (4,65)	27.4 (4.40)	3,7 (8,2)
1 1/4"	300	150 (5,91)	319 (12,56)	56) 300 (11,81)	68 (2,68)	133 (5,24)	37,1 (1,46)	5,4 (11,9)
1 1/0"	150	200 (7,87)	000 (40 70) 004 (44 07)	204 (44 07)	79 (3,11)	127 (5)	42,1 (1,66)	6,8 (15)
1 1/2"	300	200 (7,87)	323 (12,72)	304 (11,97)	79 (3,11)	155,6 (6,13)	42,1 (1,66)	8,9 (19,6)
2"	150	200 (7,87)	326 (12,83)	207 (42.00)	106 (4,17)	152,4 (6)	51,1 (2,01)	7,1 (15,7)
2	300	200 (7,87)		320 (12,03)	307 (12,09)	106 (4,17)	165 (6,5)	51,1 (2,01)
3"	150	300 (11,81)	220 (42.05)	240 (42.2)	159 (6,26)	190,5 (7,5)	82,6 (3,25)	11,7 (25,8)
3	300	300 (11,81)	329 (12,95)	310 (12,2)	159 (6,26)	209,5 (8,25)	82,6 (3,25)	16,2 (35,7)
4"	150	350 (13,78)	222 (42 44)	244 (42.2)	189 (7,44)	228,6 (9)	101,1 (3,98)	18,0 (39,7)
4	300	350 (13,78)	333 (13,11)	314 (12,2)	189 (7,44)	254 (10)	101,1 (3,98)	27,5 (60,6)
6"	150	480 (18,9)	257 (14.06)	220 (42 24)	328 (12,9)	279,4 (11)	150,1 (5,91)	30,0 (66,1)
0	300	480 (18,9)	357 (14,06)	338 (13,31)	328 (12,9)	317,5 (12,5)	150,1 (5,91)	46,0 (101,4)
8"	150	600 (23,62)	277 (14 04)	259 (14 00)	436 (17,17)	343 (13,5)	203,1 (8)	45,0 (99,2)
0	300	600 (23,62)	377 (14,84) 358 (14,09)		436 (17,17)	381 (15)	203,1 (8)	75 (165,4)
12"	150	1000 (39,37)	423 (16,65)	404 (15,91)	662 (26,1)	482,6 (19)	309,7 (12,19)	182 (401,2)
16"	150	1274 (50,16)	459 (18,07)	440 (17,32)	841 (33,1)	596,9 (23,5)	390,4 (15,37)	260 (573,2)

¹⁾ Tolerancia de medida: DN 15 ... DN 200 +0 / -3 mm; DN 300 ... DN 400: +0 / -5 mm

5 Datos técnicos - Transmisor

5.1.1 Datos técnicos generales

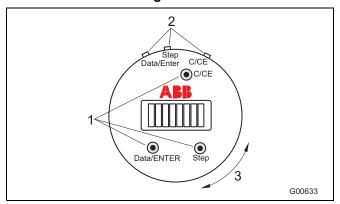


Fig. 23: Teclado e indicador LCD del transmisor

1 Sensores electromagnéticos

3 +/- 90 ° orientable

2 Teclas de control para entrada directa

Rangos de medida

El límite superior del rango de medida puede regularse continuamente entre el valor máximo posible 1,15 x $Q_{m\acute{a}xDN}$ y 0.15 x Q_{maxDN} .

Ajuste de parámetros

La entrada de datos se realiza mediante 3 teclas de control (esto no se refiere a la versión Ex "d") o directamente por fuera mediante un puntero magnético (si la caja está cerrada).

La entrada de datos se realiza mediante diálogo en texto claro con el display, o mediante comunicación digital a través del protocolo HART, PROFIBUS PA o FOUNDATION Fieldbus.

Modos de operación - caudales

Según el modelo pedido (con o sin equipo Pt100) se pueden seleccionar los siguientes modos de operación:

Fluido: líquido

- · Caudal de funcionamiento
- Caudal másico con densidad constante o densidad dependiente de la temperatura

Fluido: gas / vapor

- · Caudal de funcionamiento
- Caudal másico con densidad constante o densidad dependiente de la temperatura (si la presión es constante)
- Caudal normal con factor normal constante o factor normal en función de la temperatura (si es presión es constante)
- Caudal másico en caso de medición de vapores saturados con densidad dependiente de la temperatura

Seguridad de datos

Almacenamiento de todos los valores indicados por los totalizadores y todos los parámetros específicos de los puntos de medición (en EEPROM, durante 10 años, sin alimentación eléctrica), en caso de parada o fallo de tensión de red.

Amortiguación

Ajustable entre 1 ... 100 s, corresponde a 5 т.

Q_{v mín} (caudal bajo)

Ajustable entre el 2 y 25 % de $Q_{m\acute{a}xDN}$ (caudal máx. de funcionamiento por diámetro nominal). El caudal bajo real depende de la aplicación e instalación.

Pruebas de funcionamiento

Las pruebas de funcionamiento internas realizadas bajo control de software sirven para ensayar los componentes individuales internos. Para la puesta en servicio y probar el funcionamiento del aparato, la salida de corriente (en la versión de 4 ... 20 mA) o la señal digital de salida de las versiones Feldbus pueden simularse mediante caudales definidos por el usuario (guía manual de procesos). Además, para probar el funcionamiento, la salida de contacto se puede activar directamente.

Conexión eléctrica

Terminales roscados, puerto de conexión del PROFIBUS PA (opcional), racor atornillado para cables: -estándar., Ex "ib" / Ex "ia": M20 x 1,5; NPT 1/2 " -Ex d": NPT 1/2"

Modo de protección

IP 67 conforme a EN 60529

Display

Indicador LCD rico en contrastes, 2 x 8 dígitos (versión de 4 ... 20 mA) o 4 x 16 dígitos (versión PROFIBUS PA / FOUNDATION Fieldbus). Para visualización del caudal actual, caudales totalizados o temperaturas del fluido (opcional).

La versión de 4 ... 20 mA permite, mediante la función Multiplex, visualizar casi al mismo tiempo dos valores diferentes (p. ej., caudal actual y caudales totalizados). Con la versión Feldbus pueden visualizarse hasta cuatro valores.

Salida de contacto - terminal 41 / 42.

(estándar en todas las versiones)

Esta función se puede seleccionar mediante el software:

- alarma de límite, caudal o temperatura
- Alarma del sistema
- Salida de impulsos: f_{máx}: 100 Hz; t_{on}: 1 ... 256 ms

Tipo de contacto:

Estándar y Ex "d": optoacoplador $U_H = 16 ... 30 \text{ V}$ $I_L = 2 ... 15 \text{ mA}$

- Ex "ib" / Ex "ia": Configurado como contacto NAMUR

Protección CEM

El aparato cumple las recomendaciones NAMUR NE21. Compatibilidad electromagnética de equipos técnicos de control de procesos industriales y laboratorios 5/93 y directiva CEM 2004/108/CE (EN 61326-1), Atención: Cuando la tapa del aparato está abierta, la protección CEM no funciona y el aparato ya no está protegido contra contacto accidental.

6 Comunicación

6.1 Diseño – tecnología de 2 conductores

El diseño del transmisor de los caudalímetos vortex y swirl se basa en la tecnología de dos conductores, es decir, la alimentación de corriente y la comunicación de datos digital de la interfaz Feldbus se realizan por las mismas líneas. Adicionalmente existe un contacto de salida.

En caso de fallo de red se mantendrán todos los datos almacenados. Para el control y la configuración puede utilizarse el software SMART VISION. El SMART VISION es un software de comunicación para aparatos de campo inteligentes que aprovecha la tecnología FDT / DTM.

Existen varios rutas de comunicación que posibilitan el intercambio de datos con una gama completa de aparatos de campo. Los objetos principales de aplicación consisten en la visualización de parámetros, configuración, diagnóstico, documentación y administración de datos para todos los aparatos de campo inteligentes que satisfagan los requisitos de comunicación.

6.2 4 ... 20 mA / HART

6.2.1 Conexión eléctrica 4 ... 20 mA / HART

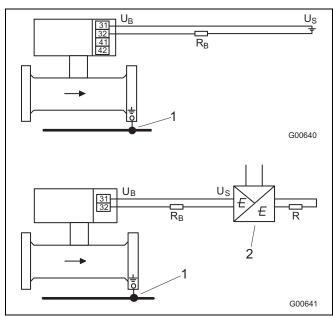


Fig. 24: Alimentación eléctrica a través de la unidad central de alimentación de corriente Alimentación eléctrica (DC o AC) a través del equipo de alimentación

1 Tierra funcional

2 Equipo de alimentación

UB = tensión de alimentación = mín. 14 V DC

US = tensión de alimentación = 14 ... 46 V DC

RB = Carga máxima permitida para el equipo de alimentación (p. ej.: indicador, carga)

R = Carga máxima permitida para el circuito de salida (determinada por el equipo de alimentación)

Alimentación eléctrica (terminales 31 / 32)

Estándar	14 46 V DC
Versión Ex	véase el capítulo 7 "Datos técnicos relativos a la protección Ex del transmisor"
Ondulación residual	Máximo: 5 % o ± 1,5 Vss
Consumo de potencia	< 1 W

Conexión eléctrica FV4000-VR4, FS4000-SR4

El sensor y el transmisor de estos aparatos están separados entre sí por un cable de señal de 10 m de longitud. El cable de señal está conectado firmemente al transmisor y puede cortarse según necesidades. La conexión del transmisor a la alimentación eléctrica se realizará como se muestra en Fig. 24.

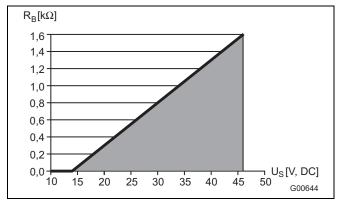


Fig. 25: Diagrama de carga de la salida de corriente: carga en función de la alimentación eléctrica

En caso de comunicación HART, la carga más pequeña es de 250 Ω . La carga R_E depende de la tensión de alimentación aplicada Us y la corriente de señalización elegida y se calcula con la siguiente fórmula:

$$R_E = \frac{U_S}{I_B}$$

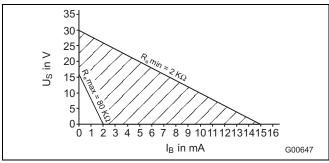


Fig. 26: Resistencia de carga de la salida de corriente en función de la corriente y la tensión

Fig. 27: Conexión eléctrica

Salida de contacto

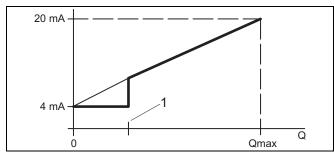


Fig. 28: Salida de corriente

1 Caudal bajo

La salida de valores medidos en la salida de corriente muestra el comportamiento representado en la figura: Por encima del caudal bajo, la corriente eléctrica se mueve en una línea recta, la que tendría 4 mA en modo de operación Q = 0 y 20 mA en modo de operación Q = Qmáx. Debido al corte por bajo caudal, el caudal se pone a 0 si el flujo volumétrico es inferior al x % Qmáx o al caudal bajo definido, es decir, la corriente eléctrica es de 4 mA.

6.2.2 Salida de corriente en caso de alarma

21 ... 23 mA según Namur NE43

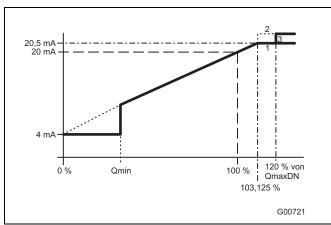


Fig. 29

- 1 Salida de corriente sin error "3" y "9", salida: 20,5 mA (NAMUR NE43)
- 2 Salida de corriente con error "3" y "9", la salida cambia al estado de alarma (21 ... 23 mA, ajustable)
- 3 Salida de corriente con error "9", la salida cambiará al estado de alarma cuando el valor QmáxDN alcance el 120% (21 ... 23 mA, ajustable)

Qmin = caudal bajo

6.2.3 Protocolo de comunicación HART

El protocolo HART permite la comunicación digital entre un sistema de control de procesos / PC, terminal de mano y el caudalímetro vortex o swirl utilizado.

Todos los parámetros del aparato y de los puntos de medición pueden transmitirse del tansmisor al PC o sistema de control de procesos, respectivamente. En el sentido contrario es posible reconfigurar de esta manera el transmisor instalado. La comunicación digital se realiza mediante una corriente alterna superpuesta a la salida analógica (4 ... 20 mA), la cual no afecta a los aparatos analizadores conectados.

Modo de transmisión

G00646

Entrada del, p. ej., SPS etc.

Con Us = 16 ... 30 V

Modulación FSK sobre la salida de corriente de 4 ... 20 mA, según estándar Bell 202. Amplitud máx. de la señal: 1,2 mA ss.

Carga - salida de corriente

Mín. > 250 Ω . máx. 750 Ω

Longitud máx. del cable: 1500 m; AWG 24 trenzado y apantallado

Velocidad en baudios

1200 baud

Indicación

Lógico 1: 1200 Hz, lógico 0: 2200 Hz

Salida de corriente en caso de alarma

High = 21 ... 23 mA, ajustable (NE43)

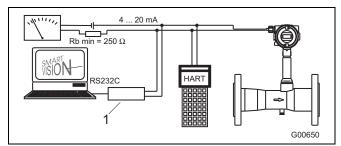


Fig. 30: Comunicación HART

1 Módem FSK

6.3 PROFIBUS PA

6.3.1 Conexión eléctrica - PROFIBUS PA

1) Terminales 31 / 32

Función PA+, PA-

Conector para PROFIBUS PA según IEC 1158-2

 $U = 9 \dots 32 V, I = 10 \text{ mA (funcionamiento normal)}$

13 mA (en caso de error / FDE)

2) Terminales 41 / 42

Función C9, E9

Salida de contacto: función seleccionable por software como salida de impulsos (fmáx: 100 Hz, 1 ... 256 ms), alarma Mín / Máx o alarma del sistema.

Configurado como contacto NAMUR conforme a DIN 19234.

Cerrado: $1 \text{ K}\Omega$ Abierto: $> 10 \text{ K}\Omega$

Conector M12

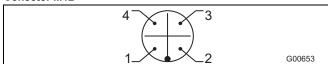


Fig. 31: Disposición de los pines en caso de conexión mediante el conector M12 opcional (vista frontal - inserto de clavija y pines)

Pin	Disposición
1	PA+ (31)
2	NC
3	PA- (32)
4	Apantallamiento

6.3.2 Comunicación PROFIBUS PA

El transmisor se puede conectar al acoplador de segmentos DP/PA y la multibarrera MB204 de ABB.

Protocolo PROFIBUS PA

Señal de salida: conforme a EN 50170 Volume 2,

Técnología de transmisión PROFIBUS PA: IEC 1158-2/EN 61158-2

Velocidad de transmisión: 31,25 KByte/s

Perfil PROFIBUS: Versión 3.0

Núm. de ident.

05DC hex

Bloques funcionales

2 x AI,

1 x TOT

Ficheros GSD

- PA139700 (1 x AI)
- PA139740 (1 x AI, 1 x TOT)
- ABB_05DC (2 x AI, 1 x TOT + datos especificados por el fabricante)

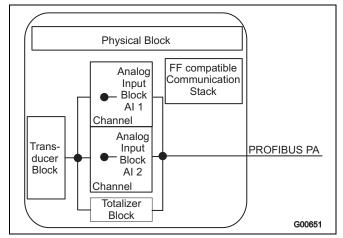


Fig. 32: Estructura en bloques con PROFIBUS PA

6.3.3 Ejemplo: comunicación PROFIBUS PA

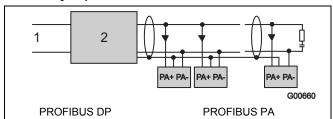


Fig. 33: Ejemplo de conexión PROFIBUS PA

- 1 Bus H2
- 2 Acoplador de segmentos (incl. alimentación de bus y terminador)

6.4 FOUNDATION Fieldbus

6.4.1 Conexión eléctrica - FOUNDATION Fieldbus

1) Terminales 31 / 32

Función FF+, FF-

Conector para FOUNDATION Fieldbus (H1) conforme a IEC 1158-2

U = 9 ... 32 V, I = 10 mA (funcionamiento normal) 13 mA (en caso de error / FDE)

2) Terminales 41 / 42

Función C9, E9

Salida de contacto: función seleccionable por software como salida de impulsos (fmáx: 100 Hz, 1 ... 256 ms), alarma Mín / Máx o alarma del sistema.

Configurado como contacto NAMUR conforme a DIN 19234.

Cerrado: $1 \text{ K}\Omega$ Abierto: $> 10 \text{ K}\Omega$

6.4.2 Comunicación FOUNDATION Fieldbus

El transmisor puede ser conectado a equipos de alimentación especiales, un Linking Device y a la multibarrera MB204 de ABB.

Protocolo FOUNDATION Fieldbus

Señal de salida: según protocolo FOUNDATION Fieldbus

Especificación: 1.4 / ITK 4.01 para el bus H1 Técnología de transmisión: IEC 1158-2/EN 61158-2

Velocidad de transmisión: 31,25 KByte/s Manufacturer ID: 0x000320 Device ID: 0x0015

Número de reg.: IT013600

Bloques funcionales

2 x Analog Input

Stack

Con funcionalidad LAS

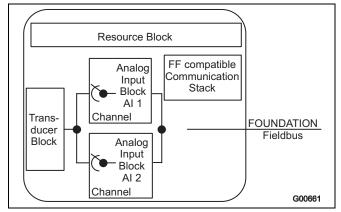


Fig. 34: Estructura en bloques con FOUNDATION Fieldbus

La magnitud de salida se puede seleccionar a través del Channel-Selector (caudal volumétrico, másico, normal, totalizador o temperatura).

6.4.3 Ejemplo: comunicación FOUNDATION Fieldbus

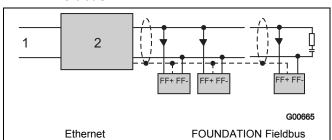


Fig. 35: Ejemplo de conexión FOUNDATION Fieldbus

1 Bus HSE

2 Linking Device (incl. alimentación de bus y terminador)

7 Datos técnicos relativos a la protección Ex del transmisor

7.1 Versión Ex "ib" / Ex "n" para VT41/ST41 y VR41/SR41 (4 ... 20 mA / HART)

¡Importante!

No está permitido utilizar los aparatos en zonas explosivas si la tapa de la caja no está cerrada completamente.

Certificado CE de homologación de modelos de construcción TÜV 08 ATEX 554808 X

Marcado:

II 2G Ex ib IIC T4
II 2D Ex tD A21 T85°C...T_{fluido} IP 67

Declaración de conformidad TÜV 08 ATEX 554833 X

Marcado:

II 3G Ex nA [nL] IIC T4 II 3D Ex tD A22 T85 $^{\circ}$ C...T_{fluido} IP 67

Certificate of Conformity IECEx TUN 07.0014 X

Marcado:

Ex ib IIC T4...T1 Ex nA [nL] IIC T4...T1 Ex tD A21 IP6X TX°C

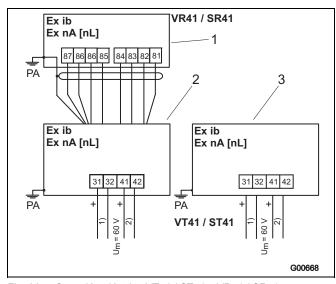


Fig. 36: Conexión eléctrica VT41 / ST41 y VR41 / SR41

- 1 Sensor de caudal
- 3 Caudalímetro
- 2 Transmisor

Colores de los conductores – sensor de caudal

Terminal	Color del conductor
81	Rojo
82	Azul
83	Rosa
84	Gris
85	Amarillo
86	Verde
86	Marrón
87	Blanco

1) Alimentación eléctrica, terminales 31 / 32

a) Ex ib: $U_i = 28 \text{ V DC}$

b) Ex nA [nL] U_B = 14 ... 46 V DC

2) Salida de contacto, terminales 41 / 42

La salida de contacto (pasiva) 'Optoacoplador' está realizada como contacto NAMUR (conforme a DIN 19234).

Cuando el contacto está cerrado, la resistencia interna es de 1000 Ω , aproximadamente; cuando el contacto está abierto, la resistencia es > 10 K Ω . Si es necesario, la salida de contacto puede conmutarse a 'Optoacoplador'.

a) NAMUR con amplificador de conmutación

b) Salida de contacto (optoacoplador)

- Ex ib: $U_i = 15 \text{ V}$

- Ex nA [nL]: U_B = 16 ... 30 V

 $I_B = 2 ... 15 \text{ mA}$

¡Importante!

¡Se deberán cumplir las indicaciones de instalación de la norma EN 60079-14!

Para la puesta en funcionamiento se deberá cumplir la norma EN 50281-1-2 para aplicaciones en zonas con polvo inflamable. Después de desconectar la alimentación eléctrica se deberá aguardar, para poder abrir la caja de transmisor, un tiempo de espera de t > 2 min.

7.1.1 Alimentación eléctrica / corriente de alimentación

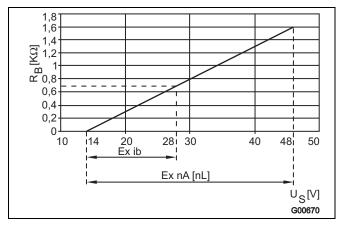


Fig. 37

La tensión mínima U_S (14 V) se refiere a una carga de 0 Ω .

U_S = Tensión de alimentación

R_B = Carga máxima permitida en el circuito de alimentación (p. ej.: indicador, registrador, carga o resistencia de potencia)

7.1.2 Datos de homologación Ex

Circuito de alimentación	Terminales 31, 32	
Tipo de protección U _m = 60 V	Zona 1: Ex ib IIC $T_{amb} = (-40 ^{\circ}\text{C}) - 20 \dots 70 ^{\circ}\text{C}$ $U_i = 28 \text{V}$ $I_i = 110 \text{mA}$ $P_i = 770 \text{mW}$ Capacidad interna efectiva: Capacidad interna efectiva: contra tierra: Inductancia interna efectiva: Zona 2: Ex nA [nL] IIC $T_{amb} = (-40 ^{\circ}\text{C}) - 20 \dots 70 ^{\circ}\text{C}$ $U_B = 14 \dots 46 \text{V}$ Zona 21 / 22: Ex tD A21 / Ex $T_{amb} = -20 ^{\circ}\text{C} \dots 60 ^{\circ}\text{C}$	

Circuito de alimentación	Terminales 41, 42	
Tipo de protección U _m = 60 V	Zona 1: Ex ib IIC U_i = 15 V I_i = 30 mA P_i = 115 mW Capacidad interna efectiva: Capacidad interna efectiva contra tierra: Inductancia interna efectiva: Zona 2: Ex nA [nL] IIC U_B = 16 30 V I_B = 2 15 mA Zona 21 / 22: Ex tD A21 / Ex T_{amb} = -20 °C 60 °C	11 nF 19,6 nF 0,14 mH tD A22

Según las condiciones especiales indicadas en el certificado de homologación, los aparatos deberán instalarse en un entorno protegido. En el macroentorno del aparato no se deberá superar el grado de polución 3 (véase IEC 60664-1). Los aparatos corresponden al modo de protección IP65/IP67. Cuando el aparato se instala conforme al fin previsto, la carcasa garantiza el cumplimiento de este requisito.

Los circuitos eléctricos conectados con o sin alimentación de red deberán cumplir la categoría de sobretensión III / II.

7.1.3 Temperaturas del fluido / clases de temperatura

Los cables que sean apropiados para temperaturas de hasta T = 110 °C (T = 230 °F) también pueden utilizarse, sin limitación alguna, para el circuito de alimentación (terminales 31 / 32) y la salida de contacto (terminales 41 / 42).

Categoría 2/3G

Para cables que sólo sean apropiados para temperaturas de hasta T = 80 °C (T = 176 °F) cabe considerar, en caso de fallo la interconexión de ambos circuitos eléctricos; en caso contrario rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Categoría 2D

Para cables que sólo sean apropiados para temperaturas de hasta T= 80 $^{\circ}$ C (T = 176 $^{\circ}$ F), rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Temperatura ambiente ²⁾	Temperatura máx. del cable de conexión utilizado, "terminales 31 / 32", "terminales 41 / 42"	Temperatura máxima permitida del fluido
(-40) -20 70 °C ³⁾	110 °C (230 °F)	280 °C / 400 °C 1)
((-40) -4 158 °F) ³⁾	110 C (230 F)	(536 °F / 752 °F) ¹⁾
(-40) -20 70 °C ³⁾		160 °C (320 °F)
((-40) -4 158 °F) ³⁾		100 0 (320 1)
(-40) -20 60 °C		240 °C (464 °F)
((-40) -4 140 °F)		240 0 (404 1)
(-40) -20 55 °C	80 °C (176 °F)	280 °C (536 °F)
((-40) -4 131 °F)	30 3 (170 1)	200 0 (330 1)
(-40) -20 50 °C		320 °C (608 °F) ¹⁾
((-40) -4 122 °F)		320 O (300 T) 17
(-40) -20 40 °C		400 °C (752 °F) ¹⁾
((-40) -4 104 °F)		400 0 (732 1)

- Temperaturas del fluido: > 280 °C (> 536 °F), sólo caudalímetro vortex FV4000 Los límites permitidos de la temperatura ambiente se determinarán de acuerdo con la aprobación y conforme al pedido efectuado (estándar: -20 °C (-4 °F)) 1) 2)
- Categoría 2D (Ex polvo) máximo: 60° C (140° F)

Temperatura máxima del fluido	Clase de temperatura
130 °C (266 °F)	T4
195 °C (383 °F)	Т3
290 °C (554 °F)	T2
400 °C (752 °F)	T1

7.2 Versión Ex "d" / Ex "ib" / Ex "n" para VT42/ST42 y VR42/SR42 (4 ... 20 mA / HART)

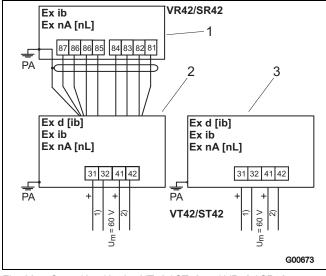
No está permitido utilizar los aparatos en zonas explosivas si la tapa de la caja no está cerrada completamente.

Certificado CE de homologación de modelos de construcción TÜV 08 ATEX 554955 X

Marcado

- Transmisor / caudalímetro II 2G Ex d [ib] IIC T6 II 2G Ex ib IIC T4 II 2D Ex tD A21 T 85 °C ... T_{fluid} IP 67
- Sensor de caudal II 2G Ex ib IIC T4 II 2D Ex tD A21 T 85 °C ... T_{fluid} IP 67

Declaración de conformidad TÜV 08 ATEX 554956 X


Marcado del sensor / transmisor / caudalímetro:

II 3G Ex nA [nL] IIC T4 II 3D Ex tD A22 T85°C...T_{fluid} IP 67

Certificate of Conformity IECEx TUN 08.0010 X

Marcado:

Ex d [ib] IIC T6 to T1 Ex ib IIC T4 to T1 Ex tD A21 IP6X T85°C...T_{fluido} Ex nA [nL] IIC T4 to T1

Conexión eléctrica VT42 / ST42 und VR42 / SR42

- Sensor de caudal
- 3 Caudalímetro
- Transmisor

Colores de los conductores - sensor de caudal

Terminal	Color del conductor
81	Rojo
82	Azul
83	Rosa
84	Gris
85	Amarillo
86	Verde
86	Marrón
87	Blanco

- 1) Alimentación eléctrica, terminales 31 / 32 a) Ex ib: U_i = 28 V DC
 - b) Ex d [ib] / Ex nA [nL] U_B = 14 ... 46 V DC
- 2) Salida de contacto, terminales 41 / 42

La salida de impulsos (pasiva) está realizada como optoacoplador. Si es necesario, la salida de contacto puede realizarse como contacto NAMUR (conforme a DIN 19234).

- a) NAMUR con amplificador de conmutación
- b) Salida de contacto (optoacoplador)

- Ex ib: $U_{i} = 15 \text{ V}$ - Ex d [ib] / Ex nA [nL]: U_B = 16 ... 30 V I_B = 2 ... 15 mA

¡Importante!

La corriente de alimentación (alimentación eléctrica) y la salida de contacto deberán utilizarse, exclusivamente, con o sin seguridad intrínseca. No se permiten combinaciones. A lo largo de la sección de la línea del circuito intrínsicamente seguro deberá instalarse una conexión equipotencial.

7.2.1 Alimentación eléctrica / corriente de alimentación

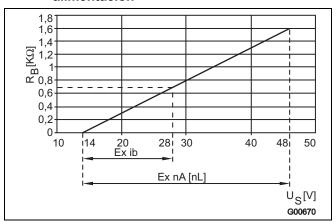


Fig. 39

La tensión mínima $\rm U_S$ (14 V) se refiere a una carga de 0 $\Omega.$

U_S = Tensión de alimentación

R_B = Carga máxima permitida en el circuito de alimentación (p. ej.: indicador, registrador, carga o resistencia de potencia)

i

¡Importante!

¡Se deberán cumplir las indicaciones de instalación de la norma EN 60079-14!

Para la puesta en funcionamiento se deberá cumplir la norma EN 50281-1-2 para aplicaciones en zonas con polvo inflamable. Después de desconectar la alimentación eléctrica se deberá aguardar, para poder abrir la caja de transmisor, un tiempo de espera de t > 2 min.

7.2.2 Datos de homologación Ex

Circuito de alimentación	Terminales 31, 32	
	Zona 1: Ex d [ib] IIC	
	T _{amb} = (-40 °C) -20 60 °C	
	Zona 2: Ex nA [nL] IIC	
	T _{amb} = (-40 °C) -20 70 °C	
	U _B = 14 46 V	
	Zona 1: Ex ib IIC	
	$T_{amb} = (-40 ^{\circ}C) -20 \dots 70 ^{\circ}C$	
Tipo de protección	U _i = 28 V	
U _m = 60 V	I _i = 110 mA	
	P _i = 770 mW	
	Capacidad interna efectiva:	14,6 nF
	Capacidad interna efectiva	
	contra tierra:	24,4 nF
	Inductancia interna efectiva:	0,27 mH
	Zona 21 / 22; Ex td A21 / Ex	tD A22
	T _{amb} = -20 60 °C	

Circuito de alimentación	Terminales 41, 42	
	Zona 1: Ex d [ib] IIC Zona 2: Ex nA [nL] IIC U _B = 16 30 V I _B = 2 15 mA	
Tipo de protección U _m = 60 V	Zona 1: Ex ib IIC U _i = 15 V I _i = 30 mA P _i = 115 mW	
	Capacidad interna efectiva: Capacidad interna efectiva contra tierra:	11,6 nF 19,6 nF
	Inductancia interna efectiva: Zona 21 / 22: Ex td A21 / Ex	-,
	T _{amb} = -20 60 °C	

Los circuitos eléctricos conectados con o sin alimentación de red deberán cumplir la categoría de sobretensión III / II.

7.2.3 Temperaturas del fluido / clases de temperatura

Los cables que sean apropiados para temperaturas de hasta T = 110 °C (T = 230 °F) también pueden utilizarse, sin limitación alguna, para el circuito de alimentación (terminales 31, 32) y la salida de contacto (terminales 41, 42).

Categoría 2/3G (Ex ib IIC)

Para cables que sólo sean apropiados para temperaturas de hasta T = 80 °C (T = 176 °F) cabe considerar, en caso de fallo la interconexión de ambos circuitos eléctricos; en caso contrario rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Categoría 2D

Para cables que sólo sean apropiados para temperaturas de hasta T= 80 °C (T = 176 °F), rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Temperatura ambiente ²⁾	Temperatura máx. del cable de conexión utilizado, "terminales 31, 32", "terminales 41, 42"	Temperatura máxima permitida del fluido
(-40) -20 60 °C (-40) -4 140 °F)	110 °C (230 °F)	280 °C / 400 °C ¹⁾ (536 °F / 752 °F) ¹⁾
(-40) -20 60 °C (-40) -4 140 °F)	80 °C (176 °F)	240 °C (464 °F)
(-40) -20 55 °C (-40) -4 131 °F)		280 °C (536 °F)
(-40) -20 50 °C (-40) -4 122 °F)		320 °C (608 °F) ¹⁾
(-40) -20 40 °C (-40) -4 104 °F)		400 °C (752 °F) ¹⁾

- Temperaturas del fluido: > 280 °C (> 536 °F), sólo caudalímetro vortex FV4000
 El límite inferior permitido de la temperatura ambiente se determinará de acuerdo con
- 2) El limite inferior permitido de la temperatura ambiente se determinará de acuerdo cor la aprobación y conforme al pedido efectuado (estándar: -20 °C (-4 °F))

Versión Ex	Temperatura máxima del fluido	Clase de temperatura
Ex d [ib] IIC	80 °C (176 °F)	T6 ³⁾
LX d [lb] IIC	95 °C (203 °F)	T5 ³⁾
F., : 110	130 °C (266 °F)	T4
Ex ib IIC bzw. Ex nA [nL]	195 °C (383 °F)	T3
	290 °C (554 °F)	T2
	400 °C (752 °F)	T1

3) No disponible para el modelo de caudalímetro VR42 / SR42

7.3 Versión FM-Approval para EE.UU. y Canadá, para VT43/ST43 y VR43/SR43 (4 ... 20 mA / HART)

Importante!

No está permitido utilizar los aparatos en zonas explosivas si la tapa de la caja no está cerrada completamente.

Marcado

Explosion Proof	XP/Class I/Div 1/BCD/T4 Ta = 70 °C Type 4X
Dust-ignition Proof	DIP/Class II,III/Div 1/EFG/T4 Ta = 70 °C Type 4X
Intrinsic Safety	IS/Class I, II,III/Div 1/ABCDEFG/T4 Ta = 70 °C Entity Type 4X
Non-incendive	NI/Class I/Div 2/ABCD/T4 Ta = 70 °C Type 4X
Suitable	S/Class II,III/Div 2/FG/T4 Ta = 70 °C Type 4X

Según las condiciones especiales indicadas en el certificado de homologación, los aparatos deberán instalarse en un entorno protegido. En el macroentorno del aparato no se deberá superar el grado de polución 3 (véase IEC 60664-1). Los aparatos corresponden al modo de protección IP65 / IP67. Cuando el aparato se instala conforme al fin previsto, la carcasa garantiza el cumplimiento de este requisito.

Los circuitos eléctricos conectados con o sin alimentación de red deberán cumplir la categoría de sobretensión III / II.

IS Entity see: SD-50-2681 (Fig. 35) Parámetros: Vmáx, Imáx, Pi, Li, Ci

Enclosure: Type 4X

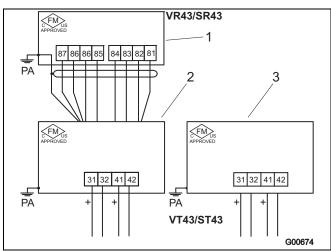


Fig. 40: Conexión eléctrica VT43 / ST43 y VR43 / SR43

- 1 Sensor de caudal
- 3 Caudalímetro
- 2 Transmisor

Colores de los conductores - sensor de caudal

Terminal	Color del conductor
81	Rojo
82	Azul
83	Rosa
84	Gris
85	Amarillo
86	Verde
86	Marrón
87	Blanco

7.3.1 Alimentación eléctrica / corriente de alimentación

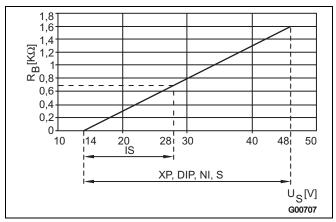


Fig. 41

La tensión mínima $\rm U_S$ (14 V) se refiere a una carga de 0 $\Omega.$

U_S = Tensión de alimentación

R_B = Carga máxima permitida en el circuito de alimentación (p. ej.: indicador, registrador, carga o resistencia de potencia)

7.3.2 Temperaturas del fluido / clases de temperatura

Los cables que sean apropiados para temperaturas de hasta T = 110 $^{\circ}$ C (T = 230 $^{\circ}$ F) también pueden utilizarse, sin limitación alguna, para el circuito de alimentación (terminales 31 / 32) y la salida de contacto (terminales 41 / 42).

Para cables que sólo sean apropiados para temperaturas de hasta T= 80 $^{\circ}$ C (T = 176 $^{\circ}$ F), rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Temperatura ambiente	Temperatura máx. del cable de conexión utilizado, "terminales 31 / 32", "terminales 41 / 42"	Temperatura máxima permitida del fluido
(-45) -20 60 °C	110 °C (230 °F)	280 °C / 400 °C 1)
(-49) -4 140 °F)		(536 °C / 752 °F) ¹⁾
(-45) -20 60 °C		240 °C (464 °F)
(-49) -4 140 °F)		240 0 (404 1)
(-45) -20 55 °C		280 °C (536 °F)
(-49) -4 131 °F)	80 °C (176 °F)	200 0 (330 1)
(-45) -20 50 °C	00 0 (170 1)	320 °C (608 °F) ¹⁾
(-49) -4 122 °F)		320 C (808 F) 17
(-45) -20 40 °C		400 °C (752 °F) ¹⁾
(-49) -4 104 °F)		400 C (752 F) 17

¹⁾ Temperaturas del fluido: > 280 °C (> 536 °F), sólo caudalímetro vortex VT43 / VR43

7.3.3 Datos de homologación Ex

Circuito de alimentación eléctrica, terminales 31 / 32

Explosion Proof	XP/Class I/Div 1/BCD/T4 Ta = 70 °C Type 4X	
Dust-ignition Proof	DIP/Class II,III/Div 1/EFG/T4 Ta = 70 °C Type 4X	U _B = 14 46 V
Dust-ignition Proof	DIP/Class II,III /Div 2 /EFG /T4 Ta=70°C Type 4X	
		V _{máx} = 28 V
Intrinsic Safety		I _{máx} = 110 mA
	IS/Class I, II,III/Div 1 ABCDEFG/T4 Ta = 70 °C Entity Type 4X	P _i = 770 mW
		Capacidad interna efectiva: 14,6 nF
		Inductancia interna efectiva: 0,27 mH
Non-incendive	NI/Class I/Div 2/ABCD/T4 Ta = 70 °C Type 4X	U _B = 14 46 V

Circuito de alimentación eléctrica, terminales 41 / 42

Explosion Proof	XP/Class I/Div 1/BCD/T4 Ta = 70 °C Type 4X	U _B = 16 30 V
Dust ignition Proof	DIP/Class II,III/Div 1/EFG/T4 Ta = 70 °C Type 4X	I _B = 2 15 mA
Dust-ignition Proof	DIP/Class II,III /Div 2 /EFG /T4 Ta=70°C Type 4X	IB - 2 13 IIIA
		V _{máx} = 15 V
Intrinsic Safety		$I_{\text{máx}} = 30 \text{ mA}$
	IS/Class I, II,III/Div 1 ABCDEFG/T4 Ta = 70 °C Entity Type 4X	P _i = 115 mW
	insic Safety DIP/Class II,III /Div 2 /EFG /T4 Ta=70°C Type 4X IS/Class I, II,III/Div 1 ABCDEFG/T4 Ta = 70 °C Entity Type 4X	Capacidad interna efectiva: 11 nF
		Inductancia interna efectiva: 0,14 mH
Non incomplise	NUCLess University Of A DCD/T4 To = 70 °C Turns 4V	U _B = 16 30 V
Non-incendive	NI/Class I/Div 2/ABCD/T4 Ta = 70 °C Type 4X	I _B = 2 15 mA

7.3.4 Trio-Wirl Control Drawing

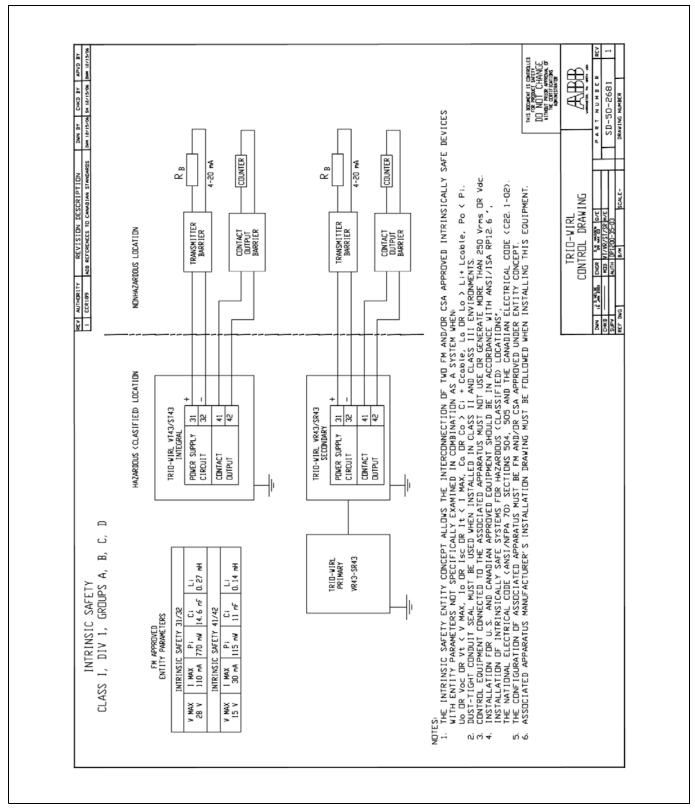


Fig. 42: Conexión eléctrica y datos de conexión VT43 / VR43 y ST43 / SR43

7.4 Versión EEX "ia" para VT4A/ST4A y VR4A/SR4A (Feldbus)

i

¡Importante!

No está permitido utilizar los aparatos en zonas explosivas si la tapa de la caja no está cerrada completamente.

Certificado de homologación CE de modelos de construcción TÜV 01 ATEX 1771

Marcado

II 2G EEx ia IIC T4 II 2D T85 °C ... T_{fluid} IP 67

El diseño de la versión Ex corresponde con el modelo FISCO (FISCO = Fieldbus Intrinsically Safe Concept) del PTB.

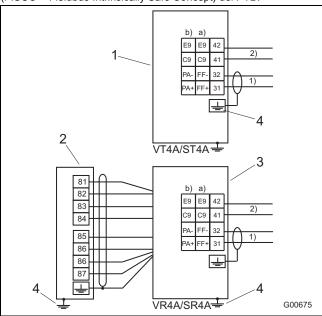


Fig. 43: Esquema de conexión para el PROFIBUS PA

- 1 Caudalímetro
- 3 Transmisor
- 2 Sensor de caudal
- 4 Tierra funcional

Colores de los conductores - sensor de caudal

Terminal	Color del conductor
81	Rojo
82	Azul
83	Rosa
84	Gris
85	Amarillo
86	Verde
86	Marrón
87	Blanco

7.4.1 Conexión eléctrica – PROFIBUS PA

1) Terminales 31 / 32

Función PA+, PA-

Conector para PROFIBUS PA según IEC 1158-2 U = 9 ... 32 V, I = 10 mA (funcionamiento normal)

13 mA (en caso de error / FDE)

2) Terminales 41 / 42

Función C9, E9

Salida de contacto: función seleccionable por software como salida de impulsos (fmáx: 100 Hz, 1 ... 256 ms), alarma Mín / Máx o alarma del sistema.

Configurado como contacto NAMUR conforme a DIN 19234.

Cerrado: $1 \text{ K}\Omega$ Abierto: $> 10 \text{ K}\Omega$

Conector M12

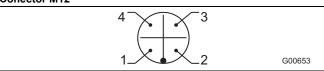


Fig. 44: Disposición de los pines en caso de conexión mediante el conector M12 opcional (vista frontal - inserto de clavija y pines)

Pin	Disposición
1	PA+ (31)
2	NC
3	PA- (32)
4	Apantallamiento

7.4.2 Conexión eléctrica – FOUNDATION Fieldbus

1) Terminales 31 / 32

Función FF+, FF-

Conector para FOUNDATION Fieldbus (H1) conforme a IEC 1158-2

U = 9 ... 32 V, I = 10 mA (funcionamiento normal) 13 mA (en caso de error / FDE)

2) Terminales 41 / 42

Función C9. E9

Salida de contacto: función seleccionable por software como salida de impulsos (fmáx: 100 Hz, 1 ... 256 ms), alarma Mín / Máx o alarma del sistema.

Configurado como contacto NAMUR conforme a DIN 19234.

Cerrado: $1 \text{ K}\Omega$ Abierto: $> 10 \text{ K}\Omega$

¡Importante!

¡Se deberán cumplir las indicaciones de instalación de la norma EN 60079-14!

Para la puesta en funcionamiento se deberá cumplir la norma EN 50281-1-2 para aplicaciones en zonas con polvo inflamable. Después de desconectar la alimentación eléctrica se deberá aguardar, para poder abrir la caja de transmisor, un tiempo de espera de t > 2 min.

7.4.3 Datos de homologación Ex

II 2D T 85 °C ... $\rm T_{fluid}$ IP 67 / T_{amb} = -20 °C ... 60 °C

Circuito de alimentación	Terminales 31 / 32
	II 2G EEx ia IIC T4 /
	T _{amb} = (-40 °C) -20 70 °C
	U _i = 24 V
Tipo de protección	I _i = 380 mA
Proceedings of the control of the co	P _i = 9,12 mW
	La capacidad interna efectiva e inductancia interna efectiva son despreciables.

Circuito de alimentación	Terminales 41 / 42	
	II 2G EEx ia IIC T4	
	U _i = 15 V	
	I _i = 30 mA	
Tipo de protección	P _i = 115 mW	
	Capacidad interna efectiva:	3,6 nF
Capacidad inte	Capacidad interna efectiva	
	contra tierra:	3,6 nF
	Inductancia interna efectiva:	0,14 mH

Sólo VR4A / SR4A

Tipo de protección	II 2G EEx ia IIC T4
Sensor piezoeléctrico	U ₀ = 8,5 V
Terminales 85, 86, 86, 87	I ₀ = 1073 mA
Pt100 - circuito eléctrico, terminales 81, 82, 83, 84	P ₀ = 2280 mW

7.4.4 Temperaturas del fluido / clases de temperatura

Los cables que sean apropiados para temperaturas de hasta T = 110 °C (T = 230 °F) también pueden utilizarse, sin limitación alguna, para el circuito de alimentación (terminales 31 / 32) y la salida de contacto (terminales 41 / 42).

Categoría 2/3G

Para cables que sólo sean apropiados para temperaturas de hasta T = 80 °C (T = 176 °F) cabe considerar, en caso de fallo la interconexión de ambos circuitos eléctricos; en caso contrario rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Categoría 2D

Para cables que sólo sean apropiados para temperaturas de hasta T= 80 $^{\circ}$ C (T = 176 $^{\circ}$ F), rigen los rangos de temperatura limitados indicados en la tabla siguiente.

Temperatura ambiente ²⁾	Temperatura máx. del cable de conexión utilizado, "terminales 31 / 32", "terminales 41 / 42"	Temperatura máxima permitida del fluido							
(-30) -20 70 °C	110 °C (230 °F)	280 °C / 400 °C ¹⁾							
((-22) -4 158 °F)	110 C (230 F)	(536 °F / 752 °F) ¹⁾							
(-30) -20 70 °C		160 °C (320 °F)							
((-22) -4 158 °F)		100 C (320 1)							
(-30) -20 60 °C		240 °C (464 °F)							
((-22) -4 140 °F)		240 0 (404 1)							
(-30) -20 55 °C	80 °C (176 °F)	280 °C (536 °F)							
((-22) -4 131 °F)	00 0 (170 1)	200 0 (330 1)							
(-30) -20 50 °C		320 °C (608 °F) ¹⁾							
((-22) -4 122 °F)		320 C (000 T) 17							
(-30) -20 40 °C		400 °C (752 °F) ¹⁾							
((-22) -4 104 °F)	,								

- Temperaturas del fluido: > 280 °C (> 536 °F), sólo caudalímetro vortex FV4000 Los límites permitidos de la temperatura ambiente se determinarán de acuerdo con la aprobación y conforme al pedido efectuado (estándar: -20 °C (-4 °F))

Temperatura máxima del fluido	Clase de temperatura
130 °C (266 °F)	T4
195 °C (383 °F)	Т3
290 °C (554 °F)	T2
400 °C (752 °F)	T1

8 Información para pedido

8.1 Caudalímetro Vortex FV4000-VT4/VR4

Referencia de pedido principal

Cifra	1 - 3	4	5	6	7	8	9	10	11	12 13	14	15	16	17 1	8 19	20	21 2	22
Caudalímetro Vortex Diseño remoto		X		X	X	X	X	X	X	X X					X X	X		X
FV4000-VT4/VR4 Diseño compacto		X			X	X	X	X	X	XX					X X			<u>^</u>
Homologación EEx (depende del modo de comunica		_ ^	^	^	^	^	^	^	^	^ ^	1^		^	<u> </u>	<u>`\</u>	_ ^ _	Λ .	^
Ninguna	.0.011)	0								l								
ATEX 2D/2G/3G intrínsicamente seguro HART	1)	1							l	l								
ATEX 2D/2G/3G intrinsicamente seguro nar i	1) 2)	2							1	l								
intrínsicamente seguro HART	۷)	2	1						•	l								
FM-Approval (Class 1 / Div. 1) HART		3								ļi								
ATEX 2D/2G intrínsicamente seguro (FISCO) PA/FF		A	1						1	l								
Otros		9							1	!								
Conexión a proceso			_						1	l								
Brida			1							ļi								
Brida con ranura (DIN 2512) (máx. PN 40)			2						1	l								
Diseño Wafer (máx. DN 150, máx. PN 64 / ASME CL	.300)		3						1	l								
Otros	,		9						1	!								
Fluido			Ť						1	l								
Líquido				1					1	!								
Gas				2		l				ļi								
Vapor				3					1	l								
Oxígeno				6					1	!								
Otros				9					1	!								
Material Caja / Cuerpo perturbador / Sensor									1	!								
Acero Cr-Ni					1				1	!								
Acero Cr-Ni / Hastelloy C / acero Cr-Ni					2				1	l								
Hastelloy C					3				1	l								
Acero Cr-Ni / Hastelloy C / Hastelloy C					4				1	!								
Otros					9					l								
Diámetro nominal // Presión nóminal estándar de la l	brida / I	Dise	ño V	Vafe					1	!								
DN 15 (1/2 inch) // PN 40 / PN 64						1	5		1	l								
DN 25 (1 inch) // PN 40 / PN 64						2	5			l								
DN 40 (1 -1/2 inch) // PN 40 / PN 64						4	0			l								
DN 50 (2 inch) // PN 40 / PN 64						5	0		1	l								
DN 80 (3 inch) // PN 40 / PN 64						8	0		1	l								
DN 100 (4 inch) // PN 16 / PN 64						1	Н		1	l								
DN 150 (6 inch) // PN 16 / PN 64						1	F		l	l								
DN 200 (8 inch) // PN 16 (no en combinación con dis	eño wat	fer)				2	Н		l	l								
DN 250 (10 inch) // PN 16 (no en combinación con di						2	F		1	l								
DN 300 (12 inch) // PN 16 (no en combinación con di		,				3	Н		1	!								
Presión nominal								"	1	l								
PN 10								Α	1	!								
PN 16								В		ļi								
PN 25								С		l								
PN 40								D	l	l								
PN 64								Ε		l								
ASME CL 150								Q	l	l								
ASME CL 300								R		l								
ASME CL 600								S		l								
Otros								Ζ		ļ								
Rugosidad de la superficie de obturación										l								
Estándar									Α	l								
Otros									Z	l								
Continúa en la nágina siguiente																		

Continúa en la página siguiente

Diseño permitido también para uso en Zona Ex 2 (II 3G EEx n[L] IIC T4)
 Diseño permitido también para uso en Zona Ex 2 (II 3G EEx n[L] IIC T4) y Zona 1 (II 2G EEx ib IIC T4)

Continuación

Referencia de pedido principal

	Cifra	1 - 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Caudalímetro Vortex	Diseño remoto	VR4	Χ	Χ	Χ	Χ	Χ	Х	(X	Χ	Х	Х	Χ	Χ	X	Χ	Х	Χ	Χ	Χ	Χ
FV4000-VT4/VR4	Diseño compacto	VT4	Х	Х	Х	Χ	Χ	Х	(X	Χ	X	Х	X	X	X	Х	X	X	X	Χ	X
Tipo de sensor																					
Sensor simple (estándar) (1										
											2										
Sensor doble (Tmáx = 280											3										
	°C) con sonda de temperati	ura int	egra	da							4										
Sensor simple para temperaturas altas (< 400 °C) A																					
Otros Z Rango de temperatura Fluido / Juntas																					
Grafito -55 280 °C (máx												1									
•	°C (máx. PN 64 / ASME CL	200)										'									
(sólo para sensor de alta te		. 300)										2									
Kalrez (3018) junta tórica ('											3									
Junta tórica de Vitón -55												4									
Junta tórica de PTFE -55												5									
Kalrez (6375) junta tórica -												8									
Certificados																					
Ninguna													Α								
Certificado de inspección (EN 10204-3.1)												В								
	3.1 según EN 10204 y ensay	o de p	resid	ón s	egúr	AD	-200	00					С								
Ensayo de presión según A	AD-2000												D								
Comunicación																					
Con display con HART														2							
Con display con PROFIBU														4							
Con Display con FOUNDA	TION Fieldbus													6							
Otros														9	J						
Placa de características Alemán															G						
Inglés															E						
Francés															F						
Estado de construcción / Es	stado del software														•	1					
(Se especificará por ABB)	nado del soltware															x					
Equipamiento adicional																					
Ninguna																	0				
Versión climaresistente																	2				
Modo de operación																					
Caudal continuo																		Α			
Racor atornillado para cable																					
M20 x 1,5 (no con homolog	gación EEx códígo 2 ó 3)																		Α		
1/2 inch NPT																			В		
` '	comunicación código 4 y con	homo	loga	ción	(EE)	CÓC	dígo	0 0	o A)									3)	С		
Otros																			Z		
Calibración																			4.		
Certificado de medida																			4)	Α	
Certificado de calibración																			5)		
Otros Rango de temperatura ambi	onto																			Z	j
	ente ecto en caso de homologacio	ón FF	(Có	diao	0 1	3 0	Δ)														1
` .	iperatura ampliado en caso o			_			,		0)												2
	ecto en caso de homologacio						Jour	gu	0)												3
	iperatura ampliado en caso o					Fy (Códi.	iao	2)												4
	iperatura ampliado en caso o iperatura ampliado en caso o																				5
	iperatura ampliado en caso (iperatura ampliado en caso (6
	iperatura ampliado en caso o iperatura ampliado en caso o																				7
Jo 70 G (rango de terri	peratura ampiliado en caso t	ac rioli	OIU	gaul	JII L	_^ (Joul	gu	Α)												

- 3) Enchufe de encaje NPE300-NE, no incluido en el volumen de suministro Debe pedirse por separado, si es necesario (número de referencia 9890116)
- 4) Certificado de medida con factores k
 5) Certificado de calibración con factores k y curva de errores

8.2 Caudalímetro Swirl FS4000-ST4/SR4

Referencia de pedido principal

	6"	4 ^		_	^	-		_	40	4.1	40	40	4.	4-	40	4-	4.0	40	00	04	00
2	Cifra	1 - 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Caudalímetro Swirl	Diseño remoto	SR4	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
FS4000-ST4/SR4	Diseño compacto	ST4	Х	Х	X	X	Х	Х	Х	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Homologación EEx			•																		
Ninguna	o con and LAST	43	0																		
ATEX 2D/2G/3G intrínsicamente	•	1)	1																		
ATEX 2D/2G/3G resistente a la	presion /	2)	2																		
intrínsicamente seguro HART	IADT		2																		
FM-Approval (Class 1 / Div. 1) F			3																		
ATEX 2D/2G intrínsicamente se	eguro (FISCO) PA/FF		A																		
Otros			9	j																	
Conexión a proceso			۵,																		
Brida			1)	1																	
Brida con ranura (DIN 2512)			2)	2																	
Otros				9	J																
Fluido																					
Líquido					1																
Gas					2																
Vapor					3																
Oxígeno				3)	6																
Otros					9																
Material Caja // Cuerpo guía de e	entrada / salida // Sen	sor				_															
Acero Cr-Ni	0.11					1															
Acero Cr-Ni / Hastelloy C / acer	o Cr-Ni					2															
Hastelloy C						3															
Acero Cr-Ni / Hastelloy C / Hast	telloy C					4															
Otros						9	J														
Diámetro nominal / Presión nomi	inal estándar																				
DN 15 (1/2 inch) / PN 40							1	5													
DN 20 (3/4 inch) / PN 40							2	0													
DN 25 (1 inch) / PN 40							2	5													
DN 32 (1 -1/4 inch) / PN 40							3	2													
DN 40 (1 -1/2 inch) / PN 40							4	0													
DN 50 (2 inch) / PN 40							5	0													
DN 80 (3 inch) / PN 40							8	0													
DN 100 (4 inch) / PN 16							1	Н													
DN 150 (6 inch) / PN 16							1	F													
DN 200 (8 inch) / PN 16							2	Н													
DN 300 (12 inch) / PN 16							3	Н													
DN 400 (16 inch) / PN 16							4	Н													
Presión nominal									-												
PN 10									Α												
PN 16									В												
PN 25 (sólo DN 200)									С												
PN 40 (máx. DN 200)									D												
ASME CL 150									Q												
ASME CL 300 (máx. DN 200)									R												
Otros									Z												
Rugosidad de la superficie de ob	bturación																				
Estándar										Α											
Otros										Z											
0 (1 / 1 / 1)																					

Continúa en la página siguiente

- Diseño permitido también para uso en Zona Ex 2 (II 3G EEx n[L] IIC T4)
 Diseño permitido también para uso en Zona Ex 2 (II 3G EEx n[L] IIC T4) y Zona 1 (II 2G EEx ib IIC T4)
 Caudalímetro para aplicaciones de oxígeno, limpiado y marcado

Continuación

Referencia de pedido principal

	Cifra	1 - 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Caudalímetro Swirl	Diseño remoto		Х	X			X	Х	Х	Χ	X	Χ	X	X	X	X	X	X	X	X	X
FS4000-ST4/SR4	Diseño compacto	ST4	Х	Х			Х	Х	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Tipo de sensor											•										
Sensor simple (estándar) (Tm											1										
Sensor simple (estándar) con		tegrad	la								2										
Sensor doble (Tmáx = 280 °C											3										
Sensor doble (Tmáx = 280 °C	c) con sonda de temperat	ura int	egra	ıda (mín. [ON 5	0)				4										
Otros											Z										
Rango de temperatura Fluido	/ Juntas																				
Grafito -55 280 °C												1									
Kalrez (3018) junta tórica 0												3									
Junta tórica de Vitón -55 23	30 °C (no para vapor)											4									
Junta tórica de PTFE												5									
Kalrez (6375) junta tórica												8									ļ
Certificados																					
Ninguna	1000101												Α								
Certificado de inspección (EN					,			_					В								
Certificado de materiales 3.1		o de p	resi	on s	egún .	AD-	200	0					С								
Ensayo de presión según AD-	-2000												D								ļ
Comunicación														_							
Con display con HART	~ 4													2							
Con display con PROFIBUS F														4							
Con Display con FOUNDATIO	ON Fieldbus													6							
Otros														9	J						ļ
Placa de características															_						
Alemán															G E						
Inglés															F						
Francés Estado de construcción / Estado	de del estavene														F	J					
	io dei soπware																				
(Se especificará por ABB) Equipamiento adicional																X					
Ninguna																	0				
Versión climaresistente																	2				
Modo de operación																		j			·
Caudal continuo																		Α			
Racor atornillado para cables																					
M20 x 1,5 (no con homologac	ión EEx códígo 2 ó 3)																		Α		
1/2 inch NPT	==x coa.gc = c c,																		В		
Conector M12 (sólo para com	unicación código 4 v con	homo	loga	ción	EEx	códi	ao	0 0 /	4)									4)	С		
Otros			3 -				3-		-,									-,	Z		
Calibración																				J	·
Certificado de medida																			5)	Α	
Certificado de calibración																			6)	В	
Certificado de medida para ga	ases / líquidos																		5)	C	
Certificado de calibración para																			6)	Ď	
Otros																			,	Z	
Rango de temperatura ambient	te																				
-20 70 °C (valor por defecto		ón EEx	k Có	digo	0, 1,	3 о	A)														1
-55 70 °C (rango de tempe								go 0)													2
-20 60 °C (valor por defector	o en caso de homologacio	ón EEx	k Có	digo	2)		Ī	,													3
-40 60 °C (rango de tempe						хС	ódio	go 2)													4
-40 70 °C (rango de tempe																					5
-45 70 °C (rango de tempe	ratura ampliado en caso o	de hon	nolo	gaci	ón EE	хС	ódic	go 3)													6
-30 70 °C (rango de tempe																					7
, 5				_				_													

- 4) Enchufe de encaje NPE300-NE, no incluido en el volumen de suministro. Debe pedirse por separado, si es necesario (número de referencia 9890116)
- Certificado de medida con factores k Certificado de calibración con factores k y curva de errores

9 Accesorios

Si se necesita una compensación P/T, véase la hoja de especificación "Ordenador de medida Sensycal".

ilmportante!

Para conectar el caudalímetro al Sensyflow se necesita una tarjeta de entrada de corriente, a través de la cual se realiza también la alimentación de corriente.

La conexión a través de la salida de impulsos no es posible, ya que la salida de impulsos no suministra una frecuencia constante, sino paquetes de impulsos.

Accesorios para el diseño Wafer (opcionales)

Según el diámetro / presión nominales, los accesorios estándar opcionales (pernos, tuercas, arandelas elásticas) comprenden también, en parte, elementos de centraje.

¡Importante!

Las juntas no están incluidas en los accesorios.

, ,	lo estari incluidas eri					
Diámetro nominal	Presión nominal	Referencia de pedido	no se necesitan elementos auxiliares de centraje	con casquillos de centraje	con dispositivo de centraje	con segmentos de centraje
DN 25	PN 64 PN 100	D614L384U11			х	
DN 25	ASME 150	D614L414U01	х			
DN 25	ASME 300 600	D614L414U02			Х	
DN 40	PN 10 PN 40	D614L384U02	Х			
DN 40	PN 64	D614L384U14			х	
DN 40	ASME 150	D614L414U03	Х			
DN 40	ASME 300 600	D614L414U04			х	
DN 50	PN 10 PN 40	D614L384U03	Х			
DN 50	PN 64	D614L384U13		Х		
DN 50	ASME 150	D614L414U05	Х			
DN 50	ASME 300	D614L414U06		Х		
DN 50	ASME 600	D614L414U14		Х		
DN 80	PN 10 PN 40	D614L384U04	Х			
DN 80	PN 64	D614L384U12				Х
DN 80	ASME 150	D614L414U07	Х			
DN 80	ASME 300 600	D614L414U08				Х
DN 100	PN 10 PN 16	D614L384U05	Х			
DN 100	PN 25 PN 40	D614L384U06		Х		
DN 100	PN 64	D614L384U16				Х
DN 100	ASME 150	D614L414U09	Х			
DN 100	ASME 300	D614L414U10				Х
DN 100	ASME 600	D614L414U13				Х
DN 150	PN 10 PN 16	D614L384U07	Х			
DN 150	PN 25 PN 40	D614L384U08		Х		
DN 150	PN 64	D614L384U17				Х
DN 150	ASME 150	D614L414U11	Х			
DN 150	ASME 300	D614L414U12				Х
DN 150	ASME 600	D614L414U15				Χ

10 Cuestionario					
Cliente:	F	echa:			
Sra./Sr.:	S	Sección:			
Teléfono:	F	ax:			
Sistema de medida:	☐ Caudalímetro Vo				ara la medida de temperatura de lculo de masas de vapores
Fluido: Estado de agregación	☐ Oxígeno ☐ Gas / Vapor			Líquido	
Caudal: (Mín., Máx., punto de trabajo)		☐ m³/h ☐ US gal/m ☐ ft³/min ☐ kg/h ☐ lb/h	iin 📙	Estado normal Masa Estado de funciona	miento
Densidad: (Mín., Máx., punto de trabajo)		☐ kg/m³ ☐ lb/ft³		Estado normal Estado de funciona	miento
Viscosidad: (Mín., Máx., punto de trabajo)		☐ mPas (cp	o) (De	ebe indicarse para lí	quidos)
Temperatura del fluido: (Mín., Máx., punto de trabajo)		□°C □°F			
Temperatura ambiente: (Mín., Máx., punto de trabajo)		□°C □°F			
Presión: (Mín., Máx., punto de trabajo)		□ bar □ psi			
Diámetro/presión nominal de la tubería:		DN PN			
Diámetro interior efectivo de la tubería:		☐ mm ☐ inch			
Versión del caudalímetro / Comunicación:	☐ 4 20 mA (dos conductores) HART (estándar			ductores IBUS PA	☐ 2 conductores FOUNDATION Fieldbus
	Protección Ex ☐ Ninguno ☐ 2G Ex "ib" ☐ 2G Ex "d" ☐ 3G Ex "nA [L]"		Protecció Ningu 2G Ex	no	Protección Ex ☐ Ninguno ☐ 2G EEx "ia"

Contacto

ASEA BROWN BOVERI, S.A.

Process Automation

División Instrumentación C/San Romualdo 13 28037 Madrid

Spain

Tel: +34 91 581 93 53 Fax: +34 91 581 99 43

ABB S.A.

Process Automation

Av. Don Diego Cisneros Edif. ABB, Los Ruices Caracas

Venezuela

Tel: +58 (0)212 2031676 Fax: +58 (0)212 2031827

ABB Automation Products GmbH

Process Automation

Dransfelder Str. 2 37079 Goettingen Germany

Tel: +49 551 905-534 Fax: +49 551 905-555

www.abb.com

Note

Nos reservamos el derecho a realizar cambios técnicos o modificar el contenido de este documento sin previo aviso. En relación a las solicitudes de compra, prevalecen los detalles acordados. ABB no acepta ninguna responsabilidad por cualquier error potencial o posible falta de información de este documento.

Nos reservamos los derechos de este documento, los temas que incluye y las ilustraciones que contiene. Cualquier reproducción, comunicación a terceras partes o utilización del contenido total o parcial está prohibida sin consentimiento previo por escrito de ABB.

Copyright© 2010 ABB
Todos los derechos reservados

